精英家教网 > 高中数学 > 题目详情
如图,在△BCD中,∠BCD=90°,AB⊥平面BCD,E、F分别是AC、AD上的动点,且
AE
AC
=
AF
AD
=λ(0<λ<1)

(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(2)若BE⊥AC,求证:平面BEF⊥平面ACD.
精英家教网
(本小题满分15分)
证明:(1)∵AB⊥平面BCD,∴AB⊥CD,(1分)
精英家教网

∵CD⊥BC且AB∩BC=B,∴CD⊥平面ABC.(4分)
AE
AC
=
AF
AD
=λ(0<λ<1)

∴不论λ为何值,恒有EFCD,(5分)
∴EF⊥平面ABC,又EF在平面BEF内,(7分)
∴不论λ为何值,恒有平面BEF⊥平面ABC.(8分)
(2):由(1)知EF⊥平面ABC,∴BE⊥EF,(10分)
又∵BE⊥AC且EF∩AC=E,∴BE⊥平面ACD,(13分)
又BE在平面BEF内,
∴平面BEF⊥平面ACD.(15分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在△BCD中,∠BCD=90°,AB⊥平面BCD,E、F分别是AC、AD上的动点,且
AE
AC
=
AF
AD
=λ(0<λ<1)

(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(2)若BE⊥AC,求证:平面BEF⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且
AE
AC
=
AF
AD
=λ(0<λ<1).
(1)判断EF与平面ABC的位置关系并给予证明;
(2)是否存在λ,使得平面BEF⊥平面ACD,如果存在,求出λ的值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届河北省高一上学期二调数学 题型:解答题

如图,在△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且==λ(0<λ<1).

(1)判断EF与平面ABC的位置关系并给予证明;

(2)是否存在λ,使得平面BEF⊥平面ACD,如果存在,求出λ的值,如果不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且数学公式=λ(0<λ<1).
(1)判断EF与平面ABC的位置关系并给予证明;
(2)是否存在λ,使得平面BEF⊥平面ACD,如果存在,求出λ的值,如果不存在,说明理由.

查看答案和解析>>

同步练习册答案