精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=4x的焦点为F,过点K(-1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D.设
FA
FB
=
8
9
,则△BDK的内切圆的半径r=______.
设L与C 的交点A(x1,y1),B(x2,y2),则D(x1,-y1).
抛物线C:y2=4x的焦点为F(1,0),
设过点K(-1,0)的直线L:x=my-1,代入抛物线方程,整理得y2-4my+4=0,
∴y1+y2=4m,y1y2=4,
FA
FB
=(x1-1,y1)•(x2-1,y2)=(my1-2)(my2-2)+y1y2=4(m2+1)-8m2+4=8-4m2=
8
9

m2=
16
9

∴m=±
4
3

∴y2-y1=4
m2-1
=
4
7
3

∴BD的斜率k1=
y2+y1
x2-x1
=
4
y2-y1
=
3
7

∴BD:y=
3
7
(x-1).
圆心M在x轴上,设为(a,0),
∵M到x=
4
3
y-1和到BD的距离相等,∴|a+1|×
3
5
=|
3
7
(a-1)|×
7
4

∴4|a+1|=5|a-1|,-1<a<1,
解得a=
1
9

∴半径r=
2
3

故答案为:
2
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点. A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点).
(Ⅰ)求抛物线C的方程;
(Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标;
(Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0),F为抛物线C的焦点,A为抛物线C上的动点,过A作抛物线准线l的垂线,垂足为Q.
(1)若点P(0,4)与点F的连线恰好过点A,且∠PQF=90°,求抛物线方程;
(2)设点M(m,0)在x轴上,若要使∠MAF总为锐角,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2Px(p>0)上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线y=kx+b(k≠0)与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求证:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,点M(m,0)在x轴的正半轴上,过M的直线l与C相交于A、B两点,O为坐标原点.
(I)若m=1,且直线l的斜率为1,求以AB为直径的圆的方程;
(II)问是否存在定点M,不论直线l绕点M如何转动,使得
1
|AM|2
+
1
|BM|2
恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x与点M(-2,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若
MA
MB
=0,则k=(  )

查看答案和解析>>

同步练习册答案