精英家教网 > 高中数学 > 题目详情

已知a、b、c分别是△ABC的三个内角A、B、C所对的边;
(1)若△ABC面积数学公式,求a、b的值;
(2)若a=ccosB且b=csinA,试判断△ABC的形状.

解:(1)∵
,得b=1,
由余弦定理得:a2=b2+c2-2bccosA=12+22-2×1×2•cos60°=3,
所以
(2)由余弦定理得:,∴a2+b2=c2
所以∠C=90°;
在Rt△ABC中,,所以
所以△ABC是等腰直角三角形.
分析:(1)由A的度数求出sinA和cosA的值,再由c及三角形的面积,利用三角形的面积公式求出b的值,然后由b,c及cosA的值,利用余弦定理即可求出a的值;
(2)由三角形的三边a,b及c,利用余弦定理表示出cosB,代入已知的a=ccosB,化简可得出a2+b2=c2,利用勾股定理的逆定理即可判断出三角形为直角三角形,在直角三角形ABC中,利用锐角三角函数定义表示出sinA,代入b=csinA,化简可得b=a,从而得到三角形ABC为等腰直角三角形.
点评:此题考查了三角形的面积公式,余弦定理,正弦定理,以及特殊角的三角函数值,考查了勾股定理的逆定理,锐角三角函数的定义,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC三个内角A、B、C的对边.
(1)若b2=ac,求角B的范围.
(2)若acosA=bcosB,试判断△ABC的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,A+C=2B,则sinC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若
cosB
cosC
=-
b
2a+c
,则B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC中角A,B,C的对边,且sin2A+sin2C-sin2B=sinAsinC.
 (1)求角B的大小;
 (2)若c=3a,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C的对边,且满足2asinB-
3
b=0.
(Ⅰ)求角A的大小;
(Ⅱ)当A为锐角时,求函数y=
3
sinB+sin(C-
π
6
)的最大值.

查看答案和解析>>

同步练习册答案