精英家教网 > 高中数学 > 题目详情
4.已知△ABC的三个内角A,B,C满足sin(180°-A)=$\sqrt{2}$cos(B-90°),$\sqrt{3}$cosA=-$\sqrt{2}$cos(180°+B),求角A,B,C的大小.

分析 由sin(180°-A)=$\sqrt{2}$cos(B-90°),化为sinA=$\sqrt{2}$sinB.$\sqrt{3}$cosA=-$\sqrt{2}$cos(180°+B),可得$\sqrt{3}$cosA=$\sqrt{2}$cosB,利用平方关系可得:cos2A=$\frac{1}{2}$,由已知可得A,B都为锐角,可得A.又由$\sqrt{3}$cosA=$\sqrt{2}$cosB,可得B,C=π-$\frac{π}{4}$$-\frac{π}{6}$.

解答 解:∵sin(180°-A)=$\sqrt{2}$cos(B-90°),∴sinA=$\sqrt{2}$sinB,①
∵$\sqrt{3}$cosA=-$\sqrt{2}$cos(180°+B),∴$\sqrt{3}$cosA=$\sqrt{2}$cosB,②
∴①2+②2可得:cos2A=$\frac{1}{2}$,∴$cosA=±\frac{\sqrt{2}}{2}$,
∵A∈(0,π),由②可知:cosA与cosB同号.
因此A,B都为锐角,
∴cosA=$\frac{\sqrt{2}}{2}$,
A=$\frac{π}{4}$.
又由$\sqrt{3}$cosA=$\sqrt{2}$cosB,
∴cosB=$\frac{\sqrt{3}}{2}$,
∴B=$\frac{π}{6}$.
∴C=π-$\frac{π}{4}$$-\frac{π}{6}$=$\frac{7π}{12}$.
∴A=$\frac{π}{4}$,B=$\frac{π}{6}$,$\frac{7π}{12}$.

点评 本题考查了同角三角函数基本关系式、三角形内角和定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}是各项均为正数的等差数列,其中a1=1,且a2、a4、a6+2成等比数列;数列{bn}的前n项和为Sn,满足2Sn+bn=1
(1)求数列{an}、{bn}的通项公式;
(2)如果cn=anbn,设数列{cn}的前n项和为Tn,求证:Tn<Sn+$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=x0-$\sqrt{1-2x}$的定义域是(  )
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$]C.(-∞,0)∪(0,$\frac{1}{2}$]D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设F1(-c,0),F2(c,0)分别是椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.
(Ⅰ)求证:|AB|=$\frac{4}{3}$a;
(Ⅱ)求椭圆的离心率;
(Ⅲ)设点P(0,-1)满足$({\overrightarrow{PA}+\overrightarrow{PB}})•\overrightarrow{AB}$=0,求E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列四个命题:
(1)函数f(x)在(0,+∞)上单调递增,在(-∞,0)上也单调递增,所以f(x)在(-∞,0)∪(0,+∞)上是增函数;
(2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2-8a<0;
(3)符合条件{1}⊆A⊆{1,2,3}的集合A有4个;
(4)函数f(x)=$\left\{\begin{array}{l}{lnx-{x}^{2}+2x(x>0)}\\{4x+1(x≤0)}\end{array}\right.$有3个零点.
其中正确命题的序号是(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.以下判断正确的是(  )
A.命题“在锐角△ABC中,有sinA>cosB”为真命题
B.命题“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”
C.函数y=f(x)为R上可导函数,则f′(x0)=0是x0为函数f(x)极值点的充要条件
D.“b=0”是“f(x)=ax2+bx+c是偶函数”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了对某课题进行研究,用分层抽样的方法从三所高校A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见表(单位:人)
高校相关人数抽取人数
A151
B30x
C60y
(Ⅰ)求x,y;
(Ⅱ)若从高校B、C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.点P(-1,2,3)关于zOx平面对称的点的坐标是(  )
A.(1,2,3)B.(-1,-2,3)C.(-1,2,-3)D.(1,-2,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若集合A={1,2},B={3,2a},且A∩B={2},则实数a的值为1.

查看答案和解析>>

同步练习册答案