精英家教网 > 高中数学 > 题目详情
13.如图所示,四棱锥S-ABCD的底面ABCD为等腰梯形,CD∥AB,AC⊥BD,垂足为O,侧面SAD⊥底面ABCD,且∠ADS=$\frac{π}{2}$,AB=8,AD=$\sqrt{34}$,SD=$\sqrt{30}$,M为BS中点.
(1)求证BS⊥平面AMC;
(2)求平面SDC与平面AMC所成锐二面角的余弦值.

分析 (1)推导出SD⊥AC,AC⊥BS,AM⊥BS,由此能证明BS⊥平面ACM.
(2)过D作DN⊥AB于N,求出CD=2,DN=5,以D为原点,DC为y轴,DS为z轴,以过原点垂直于DC,DS的直线为x轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.

解答 证明:(1)∵平面SAD⊥平面ABCD,$∠ADS=\frac{π}{2}$,
∴SD⊥平面ABCD,∴SD⊥AC,
又∵ABCD等腰梯形中AC⊥BD,∴AC⊥平面SDB,∴AC⊥BS,
在Rt△ADS中,SD=$\sqrt{30}$,AD=$\sqrt{34}$,∴SA=8,
∵AB=8,∴△SAB为等腰三角形,
∵M为中点,∴AM⊥BS,
∴BS⊥平面ACM.
解:(2)过D作DN⊥AB于N,设CD=x,DN=h,
Rt△DAN中,${h}^{2}=(\sqrt{34})^{2}-(\frac{8-x}{2})^{2}$,①
∵ABCD为等腰梯形,AC⊥BD,∴△ODC,△OAB均为等腰直角三角形,
∴$h=\frac{1}{2}(8+x)$,②
由①②得x=2,h=5,
以D为原点,DC为y轴,DS为z轴,以过原点垂直于DC,DS的直线为x轴,
如图建立空间直角坐标系,
则S(0,0,$\sqrt{30}$),D(0,0,0),C(0,2,0),A(5,-3,0),B(5,5,0),
M($\frac{5}{2},\frac{5}{2},\frac{\sqrt{30}}{2}$),
∴$\overrightarrow{CA}$=(5,-5,0),$\overrightarrow{CM}$=($\frac{5}{2},\frac{1}{2},\frac{\sqrt{30}}{2}$),
设平面CAM的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CA}=5x-5y=0}\\{\overrightarrow{n}•\overrightarrow{CM}=\frac{5}{2}x+\frac{1}{2}y+\frac{\sqrt{30}}{2}z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,-$\frac{\sqrt{30}}{5}$),
平面SDC的法向量$\overrightarrow{m}$=(1,0,0),
设所求二面角的平面角为θ,
则cosθ=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{1×\sqrt{1+1+(-\frac{\sqrt{30}}{5})^{2}}}$=$\frac{\sqrt{5}}{4}$.
∴平面SDC与平面AMC所成锐二面角的余弦值为$\frac{\sqrt{5}}{4}$.

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知两圆的半径分别为1cm和2cm,圆心距是3cm,那么这两个圆的公切线条数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=(2,k),$\overrightarrow{b}$=(1,1),满足$\overrightarrow{b}$⊥($\overrightarrow{a}$-3$\overrightarrow{b}$).
(Ⅰ)求k的值;
(Ⅱ)求向量$\overrightarrow{a}$与向量$\overrightarrow{b}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.${∫}_{0}^{\frac{π}{4}}$$\frac{cos2x}{cosx+sinx}$dx的值等于$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z=$\frac{2}{3+i}$的共轭复数$\overline{z}$为(  )
A.3-iB.$\frac{1}{3}$-iC.$\frac{3}{5}$+$\frac{1}{5}$iD.$\frac{3}{5}$-$\frac{1}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线E:y2=2px(p>0)的焦点为F,抛物线上存在一点P到其焦点的距离为$\frac{3}{2}$,且点P在圆x2+y2=$\frac{9}{4}$上.
(1)求抛物线E的方程;
(2)过点T(m,0)作两条互相垂直的直线分别交抛物线E于A、B、C、D四点,且M、N分别为线段AB、CD的中点,求△TMN的面积最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD是菱形,对角线AC与BD相交于点O,PA⊥平面ABCD,M是PD的中点.
(1)求证:OM∥平面PAB;
(2)求证:平面PBD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱锥D-ABC中,已知△BCD是正三角形,平面ABC⊥平面BCD,AB=BC=a,AC=$\sqrt{2}$a,E为BC的中点,F在棱AC上,且AF=3FC.
(1)求三棱锥D-ABC的体积;
(2)求证:AC⊥平面DEF;
(3)若M为DB中点,N在棱AC上,且CN=$\frac{3}{8}$CA,求证:MN∥平面DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知中心在原点的双曲线的焦点坐标是(0,5),且过点(0,3)则其标准方程为(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=11C.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1D.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1

查看答案和解析>>

同步练习册答案