精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2ax-
1
x2
在区间(0,1]上是增函数,则a的取值范围是
 
考点:利用导数研究函数的单调性
专题:计算题,导数的综合应用
分析:求导f′(x)=2a+
2
x3
,函数f(x)=2ax-
1
x2
在区间(0,1]上是增函数可化为2a+
2
x3
≥0在(0,1]上恒成立,从而化为最值问题.
解答: 解:∵f′(x)=2a+
2
x3

若使函数f(x)=2ax-
1
x2
在区间(0,1]上是增函数,
则2a+
2
x3
≥0在(0,1]上恒成立,
又∵y=2a+
2
x3
在(0,1]上是减函数,
∴2a+2≥0,
∴a≥-1.
故答案为:a≥-1.
点评:本题考查了导数的综合应用,同时考查了恒成立问题的处理方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:2x2-
2
3
y2=1,求与双曲线C有相同焦点且经过点B(2,-
3
)的椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A的坐标是(1,1),F是椭圆
x2
9
+
y2
5
=1的左焦点,点P在椭圆上移动,则|PA|+
3
2
|PF|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的两个顶点B、C的坐标分别为B(-3,0),C(3,0),顶点A到这两个定点的距离的平方和为24,求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线3x2-y2=2的右支上有一点P,它到左右两焦点的距离比为7:5,则点P的横坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ABCD为矩形,平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,M,N分别是AB,PC中点.求证:MN⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区脑卒中发病人数呈上升趋势,经统计分析,从1996年到2005年的10年间每两年上升2%,2004年和2005年共发病815人,如果按照这个比例下去,从2006年到2009年有多少人发病?

查看答案和解析>>

科目:高中数学 来源: 题型:

合肥一中生活区内建有一块矩形休闲区域ABCD,AB=100米,BC=50
3
米,为了便于同学们平时休闲散步,学校后勤部门将在这块区域内铺设三条小路OE、EF和OF,考虑到学校整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上,且OE⊥OF,如图所示.
(1)设∠BOE=α,试将△OEF的周长L表示成α的函数关系式,并求出此函数的定义域;
(2)经核算,三条路每米铺设费用均为800元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系中,直线l的参数方程是
x=1+t
y=
3
t
(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ-ρ2sin2θ+2ρsinθ-2=0,求直线l的极坐标方程,若直线与曲线相交于A、B,求|AB|.

查看答案和解析>>

同步练习册答案