精英家教网 > 高中数学 > 题目详情
函数f(x)=
x2+a
x+1
(a∈R)

(1)若f(x)在点(1,f(1))处的切线斜率为
1
2
,求实数a的值;
(2)若f(x)在x=1取得极值,求函数f(x)的单调区间.
(1)f′(x)=
2x(x+1)-x2-a
(x+1)2
=
x2+2x-a
(x+1)2

若f(x)在点(1,f(1))处的切线斜率为
1
2
,则f′(1)=
1
2

所以,f“(1)=
3-a
4
=
1
2
,得a=1.
(2)因为f(x)在x=1处取得极值,
所以f'(1)=0,即1+2-a=0,a=3,
f′(x)=
x2+2x-3
(x+1)2

因为f(x)的定义域为{x|x≠-1},所以有:

所以,f(x)的单调递增区间是(-∞,-3),(1+∞),单调递减区间是(-3,-1),(-1,1).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知三次函数f(x)=
1
3
ax3+
1
2
bx2-6x+1(x∈R),a,b为实常数.
(1)若a=3,b=3时,求函数f(x)的极大、极小值;
(2)设函数g(x)=f′(x)+7,其中f′(x)是f(x)的导函数,若g(x)的导函数为g′(x),g′(0)>0,g(x)与x轴有且仅有一个公共点,求
g(1)
g′(0)
的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+ax-lnx,a∈R
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(3)求证:当x∈(0,e]时,e2x-
5
2
>lnx+
lnx
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设n阶方阵,任取An中的一个元素,记为x1;划去x1所在的行和列,将剩下的元素按原来的位置关系组成n-1阶方阵An-1,任取An-1中的一个元素,记为x2;划去x2所在的行和列,…;将最后剩下的一个元素记为xn,记Sn=x1+x2+…+xn,则
lim
n→∞
Sn
n3+1
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=f(x)是R上的可导函数,当x≠0时,有f′(x)+
f(x)
x
>0
,则函数F(x)=xf(x)+
1
x
的零点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-2lnx+a(a为实常数).
(1)求f(x)的单调区间;
(2)求f(x)在区间[
1
2
,2]
上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=-
1
3
x3
+x在(a,10-a2)上有最大值,则实数a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为改善行人过马路难的问题,市政府决定在如图所示的矩形区域ABCD(AB=60米,AD=104米)内修建一座过街天桥,天桥的高GM与HN均为4
3
米,∠GEM=∠HFN=
π
6
,AE,EG,HF,FC的造价均为每米1万元,GH的造价为每米2万元,设MN与AB所成的角为α(α∈[0,
π
4
]),天桥的总造价(由AE,EG,GH,HF,FC五段构成,GM与HN忽略不计)为W万元.
(1)试用α表示GH的长;
(2)求W关于α的函数关系式;
(3)求W的最小值及相应的角α.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
x2
2
-2ax+3lnx.(0<a<3)
(1)当a=2时,求函数f(x)=
x2
2
-2ax+3lnx的单调区间.
(2)当x∈[1,+∞)时,若f(x)≥-5xlnx+3lnx-
3
2
恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案