精英家教网 > 高中数学 > 题目详情
设n阶方阵,任取An中的一个元素,记为x1;划去x1所在的行和列,将剩下的元素按原来的位置关系组成n-1阶方阵An-1,任取An-1中的一个元素,记为x2;划去x2所在的行和列,…;将最后剩下的一个元素记为xn,记Sn=x1+x2+…+xn,则
lim
n→∞
Sn
n3+1
=______.
不妨取x1=1,x2=2n+3,x3=4n+5,故
Sn=1+(2n+3)+(4n+5)+…+(2n2-1)
=[1+3+5+…+(2n-1)]+[2n+4n+…+n×2n]
=n2+n×n2
=n3+n2
lim
n→∞
Sn
n3+1
=
lim
n→∞
n3+n2
n3+1
=1,
答案:1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)在区间(a,b)内可导,其导函数y=f'(x)的图象如图所示,则函数f(x)在区间(a,b)内有(  )
A.一个极大值,一个极小值
B.一个极大值,两个极小值
C.两个极大值,一个极小值
D.两个极大值,两个极小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3+
1
2
(b-1)x2+cx.
(1)当b=-3,c=3时,求f(x)的极值;
(2)若f(x)在(-∞,x1),(x2,+∞)上递增,在(x1,x2)上递减,x2-x1>1,求证:b2>2(b+2c);
(3)在(2)的条件下,若t<x1,试比较t2+bt+c与x1的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若曲线y=ln2x在点P处的切线斜率为1,则点P的坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a>0,b>0,且函数f(x)=4x3-ax2-2bx在x=1处有极值,则a+b等于(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=elnx,g(x)=lnx-x-1,h(x)=
1
2
x2

(Ⅰ)求函数g(x)的极大值.
(Ⅱ)求证:存在x0∈(1,+∞),使g(x0)=g(
1
2
)

(Ⅲ)对于函数f(x)与h(x)定义域内的任意实数x,若存在常数k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,则称直线y=kx+b为函数f(x)与h(x)的分界线.试探究函数f(x)与h(x)是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数f(x)=
x2+a
x+1
(a∈R)

(1)若f(x)在点(1,f(1))处的切线斜率为
1
2
,求实数a的值;
(2)若f(x)在x=1取得极值,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=
1
3
x3-2x2+3x-2在区间[0,2]上最大值与最小值的和为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求函数f(x)=x5+5x4+5x3+1在区间[-1,4]上的最大值与最小值.

查看答案和解析>>

同步练习册答案