精英家教网 > 高中数学 > 题目详情
函数f(x)=
1
3
x3-2x2+3x-2在区间[0,2]上最大值与最小值的和为______.
∵函数f(x)=
1
3
x3-2x2+3x-2,∴f(x)=x2-4x+3=(x-1)(x-3),
令f(x)=0,又x∈[0,2],解得x=1.
列表如下:
由表格可知:当x=1时,f(x)取得极大值,也即最大值,f(1)=
1
3
-2+3-2=-
2
3

由f(0)=-2,f(2)=
1
3
×23-2×22+3×2-2
=-
4
3

∴f(0)<f(2).
利用表格可知:最小值为f(0).
∴函数f(x)在区间[0,2]上最大值与最小值的和=f(1)+f(0)=-
2
3
-2=-
8
3

故答案为-
8
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若曲线y=x3+ax在原点处的切线方程是2x-y=0,则实数a=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设n阶方阵,任取An中的一个元素,记为x1;划去x1所在的行和列,将剩下的元素按原来的位置关系组成n-1阶方阵An-1,任取An-1中的一个元素,记为x2;划去x2所在的行和列,…;将最后剩下的一个元素记为xn,记Sn=x1+x2+…+xn,则
lim
n→∞
Sn
n3+1
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-2lnx+a(a为实常数).
(1)求f(x)的单调区间;
(2)求f(x)在区间[
1
2
,2]
上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=-
1
3
x3
+x在(a,10-a2)上有最大值,则实数a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是(  )
A.0≤a<1B.0<a<1C.-1<a<1D.0<a<
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为改善行人过马路难的问题,市政府决定在如图所示的矩形区域ABCD(AB=60米,AD=104米)内修建一座过街天桥,天桥的高GM与HN均为4
3
米,∠GEM=∠HFN=
π
6
,AE,EG,HF,FC的造价均为每米1万元,GH的造价为每米2万元,设MN与AB所成的角为α(α∈[0,
π
4
]),天桥的总造价(由AE,EG,GH,HF,FC五段构成,GM与HN忽略不计)为W万元.
(1)试用α表示GH的长;
(2)求W关于α的函数关系式;
(3)求W的最小值及相应的角α.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ax3+bx+c图象过点(0,-
1
3
)
,且在x=1处的切线方程是y=-3x-1.
(1)求y=f(x)的解析式;
(2)求y=f(x)在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=alnx-(1+a)x+
1
2
x2,a∈R
(Ⅰ)当0<a<1时,求函数f(x)的单调区间和极值;
(Ⅱ)当x∈[
1
e
,+∞)时f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案