精英家教网 > 高中数学 > 题目详情
若曲线y=x3+ax在原点处的切线方程是2x-y=0,则实数a=______.
函数的导数为f'(x)=2x2+a,
因为在原点处的切线方程是2x-y=0,所以切线的斜率k=2,
即f'(0)=2,即a=2.
故答案为:2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知二次函数f(x)=ax2+bx+c,直线l1:x=2,直线l2:y=3tx(其中-1<t<1,t为数);.若直线l2与函数f(x)的图象以及直线l1,l2与函数f(x)的图象所围成的封闭图形如阴影所示.
(1)求y=f(x);
(2)求阴影面积s关于t的函数y=s(t)的解析式;(3)若过点A(1,m),m≠4可作曲线y=s(t),t∈R的三条切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.
(Ⅱ)设g(x)=f′(x)e-x.求函数g(x)的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)在区间(a,b)内可导,其导函数y=f'(x)的图象如图所示,则函数f(x)在区间(a,b)内有(  )
A.一个极大值,一个极小值
B.一个极大值,两个极小值
C.两个极大值,一个极小值
D.两个极大值,两个极小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
3x
+1,则
lim
△x→0
f(1-△x)-f(1)
△x
的值为(  )
A.-
1
3
B.
1
3
C.
2
3
D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=
x4
4
-
x3
3
的极值点为(  )
A.0B.-1C.0或1D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3+
1
2
(b-1)x2+cx.
(1)当b=-3,c=3时,求f(x)的极值;
(2)若f(x)在(-∞,x1),(x2,+∞)上递增,在(x1,x2)上递减,x2-x1>1,求证:b2>2(b+2c);
(3)在(2)的条件下,若t<x1,试比较t2+bt+c与x1的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若曲线y=ln2x在点P处的切线斜率为1,则点P的坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=
1
3
x3-2x2+3x-2在区间[0,2]上最大值与最小值的和为______.

查看答案和解析>>

同步练习册答案