精英家教网 > 高中数学 > 题目详情
如图,已知二次函数f(x)=ax2+bx+c,直线l1:x=2,直线l2:y=3tx(其中-1<t<1,t为数);.若直线l2与函数f(x)的图象以及直线l1,l2与函数f(x)的图象所围成的封闭图形如阴影所示.
(1)求y=f(x);
(2)求阴影面积s关于t的函数y=s(t)的解析式;(3)若过点A(1,m),m≠4可作曲线y=s(t),t∈R的三条切线,求实数m的取值范围.
(1)由图可知二次函数的图象过点(0,0),(1,0)
则f(x)=ax(x-1),
又因为图象过点(2,6)
∴6=2a∴a=3
∴函数f(x)的解析式为f(x)=3x(x-1)=3x2-3x
(2)由
y=3x2-3x
y=3tx
得x2-(1+t)x=0,∴x1=0,x2=1+t,
∵-1<t<1,∴直线l2与f(x)的图象的交点横坐标分别为0,1+t,
由定积分的几何意义知:s(t)=
1+t0
[3tx-(3x2-3x)]dx+
21+t
[(3x2-3x)-3tx]dx

=(
3t+3
2
x2-x3)
|1+t0
+(
-3t-3
2
x2+x3)
|21+t

=(1+t)3+2-6t,(-1<t<1);
(3)∵曲线方程为s(t)=(1+t)3+2-6t,t∈R,∴s'(t)=3(1+t)2-6,
∴点A(1,m),m≠4不在曲线上.
设切点为M(x0,y0),则点M的坐标满足y0=(1+x03+2-6x0
∵s'(x0)=3(1+x02-6,故切线的斜率为3(1+x0)2-6=
y0-m
x0-1
=
(1+x0)3-6x0+2-m
x0-1

整理得2x03-6x0+m=0.
∵过点A(1,m)可作曲线的三条切线,∴关于x0方程2x03-6x0+m=0有三个实根.
设g(x0)=2x03-6x0+m,则g'(x0)=6x02-6,由g'(x0)=0得x0=±1
∵当x0∈(-∞,-1)∪(1,+∞)时,g'(x0)>0∴g(x0)在(-∞,-1),(1,+∞)上单调递增,
∵当x0∈(-1,1)时,g'(x0)<0,∴g(x0)在(-1,1)上单调递减.
∴函数g(x0)=2x03-6x0+m的极值点为x0=±1,
∴关于x0方程2x03-6x0+m=0有三个实根的充要条件是
g(-1)>0
g(1)<0
,即
-2-6×(-1)+m>0
2-6+m<0

解得-4<m<4,
故所求的实数m的取值范围是-4<m<4.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知曲线y=
x2
4
-3lnx
的一条切线的斜率为
5
4
,则切点的横坐标为(  )
A.1B.-
3
2
C.4D.4或-
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3-x2-3x在x1、x2处分别取得极大值和极小值,记点M(x1,f(x1))N(x2,f(x2)).
(1)求x1,x2的值;
(2)证明:线段MN与曲线f(x)存在异于M、N的公共点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某同学对教材《选修2-2》上所研究函数f(x)=
1
3
x3-4x+4的性质进行变式研究,并结合TI-Nspire图形计算器作图进行直观验证(如图所示),根据你所学的知识,指出下列错误的结论是(  )
A.f(x)的极大值为f(-2)=
28
3
B.f(x)的极小值为f(2)=-
4
3
C.f(x)的单调递减区间为(-2,2)
D.f(x)在区间[-3,3]上的最大值为f(-3)=7

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若曲线y=x3+ax在原点处的切线方程是2x-y=0,则实数a=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=
1
x
,g(x)=f(x)+f′(x).则g(x)的最小值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知向量
a
=(x,-1),
b
=(1,lnx),则f(x)=
a
b
的极小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=ex+1在点A(0,1)处的切线斜率为(  )
A.1B.2C.eD.
1
e

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是(  )
A.0≤a<1B.0<a<1C.-1<a<1D.0<a<
1
2

查看答案和解析>>

同步练习册答案