精英家教网 > 高中数学 > 题目详情
曲线y=ex+1在点A(0,1)处的切线斜率为(  )
A.1B.2C.eD.
1
e
由题意得,y′=ex
则在点A(0,1)处的切线斜率k=e0=1,
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知二次函数f(x)=ax2+bx+c,直线l1:x=2,直线l2:y=3tx(其中-1<t<1,t为数);.若直线l2与函数f(x)的图象以及直线l1,l2与函数f(x)的图象所围成的封闭图形如阴影所示.
(1)求y=f(x);
(2)求阴影面积s关于t的函数y=s(t)的解析式;(3)若过点A(1,m),m≠4可作曲线y=s(t),t∈R的三条切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-2ax2+bx+c.
(Ⅰ)当c=0时,f(x)的图象在点(1,3)处的切线平行于直线y=x+2,求a,b的值;
(Ⅱ)当a=
3
2
,b=-9
时,f(x)在点A,B处有极值,O为坐标原点,若A,B,O三点共线,求c的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ax-ln(-x),x∈(-e,0),g(x)=-
ln(-x)
x
,其中e是自然常数,a∈R.
(1)讨论a=-1时,f(x)的单调性、极值;
(2)求证:在(1)的条件下,|f(x)|>g(x)+
1
2

(3)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若曲线y=ln2x在点P处的切线斜率为1,则点P的坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=lnx在点(1,0)处的切线与坐标轴围成的三角形的面积是(  )
A.
3
4
B.
4
5
C.
1
4
D.
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=elnx,g(x)=lnx-x-1,h(x)=
1
2
x2

(Ⅰ)求函数g(x)的极大值.
(Ⅱ)求证:存在x0∈(1,+∞),使g(x0)=g(
1
2
)

(Ⅲ)对于函数f(x)与h(x)定义域内的任意实数x,若存在常数k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,则称直线y=kx+b为函数f(x)与h(x)的分界线.试探究函数f(x)与h(x)是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设M,m分别是函数f(x)在[a,b]上的最大值和最小值,若M=m,则f′(x)(  )
A.等于0B.小于0C.等于1D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3+ax2-bx
(a,b∈R),若y=f(x)图象上的点(1,
11
3
)处的切线斜率为-4,求y=f(x)在区间[-3,6]上的最值.

查看答案和解析>>

同步练习册答案