精英家教网 > 高中数学 > 题目详情
设M,m分别是函数f(x)在[a,b]上的最大值和最小值,若M=m,则f′(x)(  )
A.等于0B.小于0C.等于1D.不确定
由已知在[a,b]上m≤f(x)≤M恒成立,又M=m,则f(x)在[a,b]为常数函数,即f(x)=M(或n),所以f′(x)=0
故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

某同学对教材《选修2-2》上所研究函数f(x)=
1
3
x3-4x+4的性质进行变式研究,并结合TI-Nspire图形计算器作图进行直观验证(如图所示),根据你所学的知识,指出下列错误的结论是(  )
A.f(x)的极大值为f(-2)=
28
3
B.f(x)的极小值为f(2)=-
4
3
C.f(x)的单调递减区间为(-2,2)
D.f(x)在区间[-3,3]上的最大值为f(-3)=7

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=ex+1在点A(0,1)处的切线斜率为(  )
A.1B.2C.eD.
1
e

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ex(ax+b),曲线y=f(x)经过点P(0,2),且在点P处的切线为l:y=4x+2.
(1)求常数a,b的值;
(2)求证:曲线y=f(x)和直线l只有一个公共点;
(3)是否存在常数k,使得x∈[-2,-1],f(x)≥k(4x+2)恒成立?若存在,求常数k的取值范围;若不存在,简要说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-2lnx+a(a为实常数).
(1)求f(x)的单调区间;
(2)求f(x)在区间[
1
2
,2]
上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线lAB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是(  )
A.0≤a<1B.0<a<1C.-1<a<1D.0<a<
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数5(x)=x3+bx2+bx+c(实数b,b,c为常数)的图象过原点,且在x=1处的切线为直线y=-
1
2

(1)求函数5(x)的解析式;
(2)若常数口>0,求函数5(x)在区间[-口,口]上的最5值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某化工企业生产某种产品,生产每件产品的成本为3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11-x)2万件;若该企业所生产的产品能全部销售,则称该企业正常生产;但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数a(1≤a≤3).
(Ⅰ)求该企业正常生产一年的利润L(x)与出厂价x的函数关系式;
(Ⅱ)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润.

查看答案和解析>>

同步练习册答案