精英家教网 > 高中数学 > 题目详情
设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=
1
x
,g(x)=f(x)+f′(x).则g(x)的最小值是______.
∵函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=
1
x

∴f(x)=lnx,
∴g(x)=f(x)+f′(x)=lnx+
1
x

g(x)=
1
x
-
1
x2
=
x-1
x2

由g′(x)=0,得x=1.
∵0<x<1时,g′(x)<0;x>1时,g′(x)>0.
∴g(x)的增区间是(1,+∞),减区间是(0,1).
∴g(x)min=g(1)=ln1+
1
1
=1.
故答案为:1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知二次函数f(x)=ax2+bx+c,直线l1:x=2,直线l2:y=3tx(其中-1<t<1,t为数);.若直线l2与函数f(x)的图象以及直线l1,l2与函数f(x)的图象所围成的封闭图形如阴影所示.
(1)求y=f(x);
(2)求阴影面积s关于t的函数y=s(t)的解析式;(3)若过点A(1,m),m≠4可作曲线y=s(t),t∈R的三条切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,函数f(x)的图象是折线段ABC,其A,B,C的坐标分别为(0,4),(2,0),(6,4),则
lim
△x→0
f(1+△x)-f(1)
△x
=______.(用数字作答)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数g(x)=(a-2)x(x>-1),函数f(x)=ln(1+x)+bx的图象如图所示.
(I)求b的值;
(II)求函数F(x)=f(x)-g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=x3+ax2+ax(x∈R)不存在极值点,则a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=xe-x(x∈R)
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);
(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ax-ln(-x),x∈(-e,0),g(x)=-
ln(-x)
x
,其中e是自然常数,a∈R.
(1)讨论a=-1时,f(x)的单调性、极值;
(2)求证:在(1)的条件下,|f(x)|>g(x)+
1
2

(3)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=lnx在点(1,0)处的切线与坐标轴围成的三角形的面积是(  )
A.
3
4
B.
4
5
C.
1
4
D.
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-
a
x

(Ⅰ)若a>0,试判断f(x)在定义域内的单调性;
(Ⅱ)若f(x)在[1,e]上的最小值为
3
2
,求a的值;
(Ⅲ)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案