精英家教网 > 高中数学 > 题目详情
已知函数f(x)=xe-x(x∈R)
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);
(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.
(Ⅰ)f′(x)=(1-x)e-x
令f′(x)=0,解得x=1
当x变化时,f′(x),f(x)的变化情况如下表

所以f(x)在(-∞,1)内是增函数,在(1,+∞)内是减函数.
函数f(x)在x=1处取得极大值f(1)且f(1)=
1
e


(Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)ex-2
令F(x)=f(x)-g(x),即F(x)=xe-x+(x-2)ex-2
于是F'(x)=(x-1)(e2x-2-1)e-x
当x>1时,2x-2>0,从而e2x-2-1>0,又e-x>0,所以f′(x)>0,从而函数F(x)在[1,+∞)是增函数.
又F(1)=e-1-e-1=0,所以x>1时,有f(x)>F(1)=0,即f(x)>g(x).

(Ⅲ)证明:(1)若(x1-1)(x2-1)=0,由(I)及f(x1)=f(x2),则x1=x2=1.与x1≠x2矛盾.
(2)若(x1-1)(x2-1)>0,由(I)及f(x1)=f(x2),得x1=x2.与x1≠x2矛盾.
根据(1)(2)得(x1-1)(x2-1)<0,不妨设x1<1,x2>1.
由(Ⅱ)可知,f(x2)>g(x2),
则g(x2)=f(2-x2),
所以f(x2)>f(2-x2),
从而f(x1)>f(2-x2).
因为x2>1,所以2-x2<1,
又由(Ⅰ)可知函数f(x)在区间(-∞,1)内是增函数,
所以x1>2-x2,即x1+x2>2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x3-2x2-4x-7,其导函数为f′(x).
①f(x)的单调减区间是(
2
3
,2)

②f(x)的极小值是-15;
③当a>2时,对任意的x>2且x≠a,恒有f(x)>f(a)+f′(a)(x-a)
④函数f(x)满足f(
2
3
-x)+f(
2
3
+x)=0

其中假命题的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某质点的运动方程为s(t)=t3+bt2+ct+d,如图是其运动轨迹的一部分,若t∈[
1
2
,4]时,s(t)<3d2恒成立,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

lim
△x→0
f(x0+2△x)-f(x0)
△x
=1,则f′(x0)等于(  )
A.2B.-2C.
1
2
D.-
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=
1
x
,g(x)=f(x)+f′(x).则g(x)的最小值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx,g(x)=
1
2
ax2+bx(a≠0)
(I)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(II)若a=2,b=1,若函数k=g(x)-2f(x)-x2在[1,3]上恰有两个不同零点,求实数k的取值范围;
(III)设函数f(x)的图象C1与函数g(x)的图象C2交于P,Q两点,过线段PQ的中点R作x轴的垂线分别交C1、C2于M、N两点,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[-1,0],x2∈[1,2].
(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;
(2)证明:-10≤f(x2)≤-
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

己知函数f(x)=ax3+bx2+c,其导数f′(x)的图象如图所示,则函数f(x)的极大值是(  )
A.a+b+cB.8a+4b+cC.3a+2bD.c

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx+c在x=2处取得极值为c=16.
(1)求a、b的值;
(2)若f(x)有极大值28,求f(x)在[-3,3]上的最大值.

查看答案和解析>>

同步练习册答案