精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx,g(x)=
1
2
ax2+bx(a≠0)
(I)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(II)若a=2,b=1,若函数k=g(x)-2f(x)-x2在[1,3]上恰有两个不同零点,求实数k的取值范围;
(III)设函数f(x)的图象C1与函数g(x)的图象C2交于P,Q两点,过线段PQ的中点R作x轴的垂线分别交C1、C2于M、N两点,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.
(I)h(x)=lnx+x2-bx,且函数的定义域为(0,+∞)
∴依题知h(x)=
1
x
+2x-b≥0
对(0,+∞)恒成立,
b≤
1
x
+2x

∵x>0,
b≤2
2

(II)函数k(x)=g(x)-2f(x)-x2在[1,3]上恰有两个不同的零点等价于方程
x-2lnx=a,在[1,3]上恰有两个相异实根.
令m(x)=x-2lnx,
m(x)=1-
2
x

∴m(x)在[1,2]上单减,在(2,3]上单增,
m(x)的最小值是2-2ln2
故2-2lnx<k<3-2ln3
(III)设点P(x1,y1)Q(x2,y2
则PQ的中点R的横坐标
x1+x2
2

C1在点M处的切线的斜率为k1=
2
x1+x2

C2在点N处的切线的斜率为k2=
x1+x2
2
+b
假设C1点M处的切线与C2在点N处的切线平行,则斜率相等
即ln
x2
x1
=
2(
x2
x1
-1)
1+
x2
x1

u=
x2
x1
>1

则lnu=
2(u-1)
1+u

令r(u)=lnu-
2(u-1)
1+u
(u>1)
r(u)=
(u-1)2
u(1+u)2

∵u>1,r′(u)>0
∴r(u)单调递增,
故r(u)>r(1)=0,lnu>
2(u-1)
u+1

∵①与②矛盾,
∴假设不成立,故C1点M处的切线与C2在点N处的切线不平行.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=x3+ax+b的图象为曲线C,直线y=kx-2与曲线C相切于点(1,0).则k=______;函数f(x)的解析式为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若曲线C:y=x3-2ax2+2ax上任意点处的切线的倾斜角都为锐角,那么整数a的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
2ax-a2+1
x2+1
(x∈R),其中a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a≠0时,求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=xe-x(x∈R)
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);
(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ex,g(x)=lnx.
(Ⅰ)求证:g(x)<x<f(x);
(Ⅱ)设直线l与f(x)、g(x)均相切,切点分别为(x1,f(x1))、(x2,g(x2)),且x1>x2>0,求证:x1>1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)=
ex
1+ax2
,其中a为正实数
(Ⅰ)当a=
4
3
时,求f(x)的极值点;
(Ⅱ)若f(x)为R上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

an为(1+x)n+1的展开式中含xn-1项的系数,则
lim
n→∞
(
1
a1
+
1
a2
+…+
1
an
)
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax-1-lnx(a∈R).
(Ⅰ)讨论函数f(x)在定义域内的极值点的个数;
(Ⅱ)若函数f(x)在x=1处取得极值,对?x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围;
(Ⅲ)当0<x<y<e2且x≠e时,试比较
y
x
1-lny
1-lnx
的大小.

查看答案和解析>>

同步练习册答案