精英家教网 > 高中数学 > 题目详情
已知f(x)=ex,g(x)=lnx.
(Ⅰ)求证:g(x)<x<f(x);
(Ⅱ)设直线l与f(x)、g(x)均相切,切点分别为(x1,f(x1))、(x2,g(x2)),且x1>x2>0,求证:x1>1.
(Ⅰ)证明:令h(x)=f(x)-x=ex-x,h′(x)=ex-1,
令h′(x)=0,解得x=0.
当x<0时,h′(x)<0;当x>0时,h′(x)>0.
∴当x=0时,ymin=e0-0=1>0
∴ex>x.
令u(x)=x-g(x)=x-lnx,u(x)=1-
1
x
=
x-1
x
(x>0).
令u′(x)=0,解得x=1
当0<x<1时,u′(x)<0;当x>1时,u′(x)>0.
∴当x=1时,umin=1-ln1=1>0.
∴x>lnx,(x>0),
∴g(x)<x<f(x).
(Ⅱ)f'(x)=exg′(x)=
1
x

切点的坐标分别为(x1ex1),(x2,lnx2),可得方程组:
ex1=
1
x2
lnx2-ex1
x2-x1
=ex1

∵x1>x2>0,
ex1>1,∴
1
x2
=ex1>1

∴0<x2<1.
由②得lnx2-ex1=ex1(x2-x1)
lnx2=ex1(x2-x1+1)
∵0<x2<1,∴lnx2<0,
∴x2-x1+1<0,即x1>x2+1>1.
∴x1>1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3处取得极值.
(1)求f(x)的解析式;
(2)求f(x)在点A(1,16)处的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知曲线f(x)=ex在点(x0,f(x0))处的切线经过点(0,0),则x0的值为(  )
A.
1
e
B.1C.eD.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线f(x)=xlnx在x=e处的切线方程为(  )
A.y=xB.y=x-eC.y=2x+eD.y=2x-e

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx,g(x)=
1
2
ax2+bx(a≠0)
(I)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(II)若a=2,b=1,若函数k=g(x)-2f(x)-x2在[1,3]上恰有两个不同零点,求实数k的取值范围;
(III)设函数f(x)的图象C1与函数g(x)的图象C2交于P,Q两点,过线段PQ的中点R作x轴的垂线分别交C1、C2于M、N两点,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知曲线y=3x2+2x在点(1,5)处的切线与直线2ax-y-6=0平行,则a=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=x3-
9
2
x2+6x+m2,其中m∈R,
(1)若函数f(x)在点(0,f(0))处的切线过点(-1,2),求m的值;
(2)若?x∈[0,3],f(x)≤m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=4x3-3x2sinθ+
1
32
,其中x∈R,θ∈(0,π).
(Ⅰ)若f′(x)的最小值为-
3
4
,试判断函数f(x)的零点个数,并说明理由;
(Ⅱ)若函数f(x)的极小值大于零,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=mln(x-1)+(m-1)x,m∈R是常数.
(1)若m=
1
2
,求函数f(x)的单调区间;
(2)若函数f(x)存在最大值,求m的取值范围;
(3)若对函数f(x)定义域内任意x1、x2(x1≠x2),
f(x1)+f(x2)
2
>f(
x1+x2
2
)
恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案