精英家教网 > 高中数学 > 题目详情
曲线f(x)=xlnx在x=e处的切线方程为(  )
A.y=xB.y=x-eC.y=2x+eD.y=2x-e
求导函数f′(x)=lnx+1,∴f′(e)=lne+1=2
∵f(e)=elne=e
∴曲线f(x)=xlnx在x=e处的切线方程为y-e=2(x-e),即y=2x-e
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

函数y=2x2-3x上点(1,-1)处的切线方程为(  )
A.x-y+2=0B.x-y-2=0C.x-2y-3=0D.2x-y-3=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数y1=sin(2x1)+
1
2
(x1∈[0,π]),函数y2=x2+3,则(x1-x22+(y1-y22的最小值为(  )
A.
2
12
π+
5
2
-
6
4
B.
2
12
π
C.(
5
2
-
6
4
2
D.
(π-3
3
+15)
2
72

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数y=xlnx
(1)求这个函数的导数;
(2)求这个函数的图象在点x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
2ax-a2+1
x2+1
(x∈R),其中a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a≠0时,求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图为函数f(x)=
x
(0<x<1)的图象,其在点M(t,f(t))处的切线为l,l与y轴和直线y=1分别交于点P、Q,点N(0,1),若△PQN的面积为b时的点M恰好有两个,则b的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ex,g(x)=lnx.
(Ⅰ)求证:g(x)<x<f(x);
(Ⅱ)设直线l与f(x)、g(x)均相切,切点分别为(x1,f(x1))、(x2,g(x2)),且x1>x2>0,求证:x1>1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,则
lim
n→+∞
n2[f(n+1)-f(n)]
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+3ax-1,g(x)=f′(x)-ax-5,其中f′(x)是的f(x)的导函数.
(Ⅰ)对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;
(Ⅱ)设a=-m2,当实数m在什么范围内变化时,函数y=f(x)的图象与直线y=3只有一个公共点.

查看答案和解析>>

同步练习册答案