精英家教网 > 高中数学 > 题目详情
f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,则
lim
n→+∞
n2[f(n+1)-f(n)]
=______.
由题意可得,f(n+1)-f(n)=(
1
n+2
+
1
n+3
+
1
n+4
+…+
1
2n+2
)-(
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
)=
1
2n+1
+
1
2n+2
-
1
n+1

lim
n→+∞
n2[f(n+1)-f(n)]
=
lim
n→+∞
n2
1
2n+1
+
1
2n+2
-
1
n+1
)=
lim
n→+∞
n2
1
(2n+1)(2n+2)
)=
lim
n→+∞
n2
4n2+6n+2
)=
lim
n→+∞
1
4+
6
n
+
2
n2
)=
1
4+0+0
=
1
4

故答案为
1
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=aln(ex+1)-(a+1)x,g(x)=x2-(a-1)x-f(lnx),a∈R,且g(x)在x=1处取得极值.
(1)求a的值;
(2)若对0≤x≤3,不等式g(x)≤m-8ln2成立,求m的取值范围;
(3)已知△ABC的三个顶点A,B,C都在函数f(x)的图象上,且横坐标依次成等差数列,讨论△ABC是否为钝角三角形,是否为等腰三角形.并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线f(x)=xlnx在x=e处的切线方程为(  )
A.y=xB.y=x-eC.y=2x+eD.y=2x-e

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知曲线y=3x2+2x在点(1,5)处的切线与直线2ax-y-6=0平行,则a=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=x3-
9
2
x2+6x+m2,其中m∈R,
(1)若函数f(x)在点(0,f(0))处的切线过点(-1,2),求m的值;
(2)若?x∈[0,3],f(x)≤m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x-1+
a
x
(a∈R,她为自然对数的底数).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)当a=1的值时,若直线l:y=kx-1与曲线y=f(x)没有公共点,求k的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=4x3-3x2sinθ+
1
32
,其中x∈R,θ∈(0,π).
(Ⅰ)若f′(x)的最小值为-
3
4
,试判断函数f(x)的零点个数,并说明理由;
(Ⅱ)若函数f(x)的极小值大于零,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=3x-x3在区间(a-1,a)上有最小值,则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

当x∈(-1,3)时不等式的x2+ax-2<0恒成立,则a的取值范围是______.

查看答案和解析>>

同步练习册答案