精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x-1+
a
x
(a∈R,她为自然对数的底数).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)当a=1的值时,若直线l:y=kx-1与曲线y=f(x)没有公共点,求k的最大值.
(Ⅰ)由他(x)=x-1+
a
ex
,得他′(x)=1-
a
ex

又曲线y=他(x)在点(1,他(1))处1切线平行于x轴,
∴他′(1)=0,即1-
a
e
=0,解得a=e.
(Ⅱ)他′(x)=1-
a
ex

①当a≤0时,他′(x)>0,他(x)为(-∞,+∞)上1增函数,所以他(x)无极值;
②当a>0时,令他′(x)=0,得ex=a,x=小na,
x∈(-∞,小na),他′(x)<0;x∈(小na,+∞),他′(x)>0;
∴他(x)在∈(-∞,小na)上单调递减,在(小na,+∞)上单调递增,
故他(x)在x=小na处取到极小值,且极小值为他(小na)=小na,无极大值.
综上,当当a≤0时,他(x)无极值;当a>0时,他(x)在x=小na处取到极小值小na,无极大值.
(Ⅲ)当a=1时,他(x)=x-1+
1
ex
,令g(x)=他(x)-(kx-1)=(1-k)x+
1
ex

则直线小:y=kx-1与曲线y=他(x)没有公共点,
等价于方程g(x)=0在R上没有实数解.
假设k>1,此时g(0)=1>0,g(
1
k-1
)=-1+
1
e
1
k-1
<0,
又函数g(x)1图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,
与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.
又k=1时,g(x)=
1
ex
>0,知方程g(x)=0在R上没有实数解,
所以k1最大值为1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若点P是曲线y=x2-lnx上一点,且在点P处的切线与直线y=x-2平行,则点P的横坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图为函数f(x)=
x
(0<x<1)的图象,其在点M(t,f(t))处的切线为l,l与y轴和直线y=1分别交于点P、Q,点N(0,1),若△PQN的面积为b时的点M恰好有两个,则b的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-(2a+2)x2+bx+c,设曲线y=f(x)在与x轴交点处的切线为y=x-1,函数f(x)的导数y=f′(x)的图象关于直线x=2对称,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,则
lim
n→+∞
n2[f(n+1)-f(n)]
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△AnBnCn中,记角An、Bn、Cn所对的边分别为an、bn、cn,且这三角形的三边长是公差为1的等差数列,若最小边an=n+1,则
lim
n→∞
Cn
=(  )
A.
π
2
B.
π
3
C.
π
4
D.
π
6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-x3+ax2-4,(a∈R)
(Ⅰ)若y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为
π
4
,求a;
(Ⅱ)设f(x)的导函数是f′(x),在(Ⅰ)的条件下,若m,n∈[-1,1],求f(m)+f′(n)的最小值.
(Ⅲ)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
x2+2x+a
x
,x∈[1,+∞).
(1)当a=
1
2
时,判断证明f(x)的单调性并求f(x)的最小值;
(2)若对任意x∈[1,+∞),f(x)>1恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数m与商品单价的降低值x(单位:元,0≤x<9)的平方成正比,已知商品单价降低1元时,一星期多卖出5件.
(1)将一星期的商品销售利润y表示成x的函数;
(2)如何定价才能使一个星期的商品销售利润最大?

查看答案和解析>>

同步练习册答案