精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x3+ax2-4,(a∈R)
(Ⅰ)若y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为
π
4
,求a;
(Ⅱ)设f(x)的导函数是f′(x),在(Ⅰ)的条件下,若m,n∈[-1,1],求f(m)+f′(n)的最小值.
(Ⅲ)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范围.
(Ⅰ)∵f'(x)=-3x2+2ax(1分),
由已知f′(x)=tan
π
4
=1
,即-3+2a=1(2分),
∴a=2(3分);

(Ⅱ)由(Ⅰ)知f(x)=-x3+2x2-4(4分),
f′(x)=-3x2+4x=-3x(x-
4
3
)
(5分),
x∈[-1,1]时,如下表:
(7分)
可见,n∈[-1,1]时,f′(x)最小值为f′(-1)=-7,
m∈[-1,1]时,f(m)最小值为f(0)=-4,
∴f(m)+f′(n)的最小值为-11(10分);

(Ⅲ)∵f′(x)=-3x(x-
2a
3
)

(1)若a≤0,当x>0时,f′(x)<0,
∴f(x)在(0,+∞)单减,
又由f(0)=-4,则x>0时f(x)<-4,
∴当x≤0时,不存在x0>0使f(x0)>0(11分);
(2)若a>0时,
0<x<
2a
3
时,f′(x)>0.当x>
2a
3
时,f′(x)<0

∴f(x)在(0,
2a
3
]
上单增,在[
2a
3
,+∞)
单减;
∴x∈(0,+∞)时,f(x)max=f(
2a
3
)=
4a3
27
-4
(12分),
由已知,必须
4a3
27
-4>0∴a3>27

∴a>3,
即a>3时,存在x0∈(0,+∞)使f(x0)>0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3-
a+1
2
x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点.
(Ⅰ)当a=1时,求函数f(x)的图象在x=3处的切线方程;
(Ⅱ)若存在x<0,使得f′(x)=-9,求a的最大值;
(Ⅲ)当a>0时,求函数f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知曲线y=3x2+2x在点(1,5)处的切线与直线2ax-y-6=0平行,则a=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x-1+
a
x
(a∈R,她为自然对数的底数).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)当a=1的值时,若直线l:y=kx-1与曲线y=f(x)没有公共点,求k的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=4x3-3x2sinθ+
1
32
,其中x∈R,θ∈(0,π).
(Ⅰ)若f′(x)的最小值为-
3
4
,试判断函数f(x)的零点个数,并说明理由;
(Ⅱ)若函数f(x)的极小值大于零,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=4x-x4,在[-1,2]上的最大、最小值分别为(  )
A.、f(1),f(-1)B.f(1),f(2)C.f(-1),f(2)D.f(2),f(-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=3x-x3在区间(a-1,a)上有最小值,则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a∈R,函数f(x)=(x2-ax-a)ex
(Ⅰ)若a=1,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求函数f(x)在[-2,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(x+1)lnx-x+1.
(Ⅰ)若xf′(x)≤x2+ax+1,求a的取值范围;
(Ⅱ)证明:(x-1)f(x)≥0.

查看答案和解析>>

同步练习册答案