精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3-
a+1
2
x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点.
(Ⅰ)当a=1时,求函数f(x)的图象在x=3处的切线方程;
(Ⅱ)若存在x<0,使得f′(x)=-9,求a的最大值;
(Ⅲ)当a>0时,求函数f(x)的零点个数.
f(x)=
1
3
x3-
a+1
2
x2+bx+a
,f'(x)=x2-(a+1)x+b
由f'(0)=0得b=0,f'(x)=x(x-a-1).
(Ⅰ)当a=1时,f(x)=
1
3
x3-x2+1
,f'(x)=x(x-2),f(3)=1,f'(3)=3
所以函数f(x)的图象在x=3处的切线方程为y-1=3(x-3),即3x-y-8=0;
(Ⅱ)存在x<0,使得f'(x)=x(x-a-1)=-9,-a-1=-x-
9
x
=(-x)+(-
9
x
)≥2
(-x)•(-
9
x
)=6
,a≤-7,
当且仅当x=-3时,a=-7,所以a的最大值为-7;
(Ⅲ)当a>0时,x,f'(x),f(x)的变化情况如下表:

f(x)的极大值f(0)=a>0,
f(x)的极小值f(a+1)=a-
1
6
(a+1)3=-
1
6
[a3+3(a-
1
2
)
2
+
1
4
]<0

f(-2)=-a-
14
3
<0
f(x)=
1
3
x2[x-
3
2
(a+1)]+a
f(
3
2
(a+1))=a>0

所以函数f(x)在区间(-2,0),(0,a+1),(a+1,
3
2
(a+1))
内各有一个零点,
故函数f(x)共有三个零点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-3x,
(1)求函数f(x)在[-3,
3
2
]
上的最大值和最小值.
(2)求曲线y=f(x)在点P(2,f(2))处的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=lnx-
1
x
,过函数f(x)的图象上一点P的切线l与直线y=2x-3平行,则点P的坐标为(  )
A.(1,-1)B.(2,ln2-
1
2
C.(3,ln3-
1
3
D.(4,ln4-
1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点P是曲线y=x2-lnx上一点,且在点P处的切线与直线y=x-2平行,则点P的横坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数y1=sin(2x1)+
1
2
(x1∈[0,π]),函数y2=x2+3,则(x1-x22+(y1-y22的最小值为(  )
A.
2
12
π+
5
2
-
6
4
B.
2
12
π
C.(
5
2
-
6
4
2
D.
(π-3
3
+15)
2
72

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
2
ax2
+2lnx,曲线y=f(x)在x=1处的切线斜率为4.
(1)求a的值及切线方程;
(2)点P(x,y)为曲线y=f′(x)上一点,求y-x的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数y=xlnx
(1)求这个函数的导数;
(2)求这个函数的图象在点x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图为函数f(x)=
x
(0<x<1)的图象,其在点M(t,f(t))处的切线为l,l与y轴和直线y=1分别交于点P、Q,点N(0,1),若△PQN的面积为b时的点M恰好有两个,则b的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-x3+ax2-4,(a∈R)
(Ⅰ)若y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为
π
4
,求a;
(Ⅱ)设f(x)的导函数是f′(x),在(Ⅰ)的条件下,若m,n∈[-1,1],求f(m)+f′(n)的最小值.
(Ⅲ)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范围.

查看答案和解析>>

同步练习册答案