精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-3x,
(1)求函数f(x)在[-3,
3
2
]
上的最大值和最小值.
(2)求曲线y=f(x)在点P(2,f(2))处的切线方程.
(1)f′(x)=3x2-3=3(x-1)(x+1),f'(x)=0即x=-1,或x=1
都在[-3,
3
2
],且f(1)=-2,f(-1)=2,又f(-3)=(-3)3-3×(-3)=-18,
f(
3
2
)=(
3
2
)3-3×
3
2
=-
9
8
,从而f(-1)最大,f(-3)最小.
∴函数f(x)在[-3,
3
2
]
上的最大值是2,最小值是-18.
(2)因为f′(x)=3x2-3,f'(2)=3×22-3=9
即切线的斜率k=f′(2)=9,又f(2)=2,运用点斜式方程得:
y-2=9(x-2)即9x-y-16=0
所以曲线y=f(x)在点P(2,f(2))处的切线方程是9x-y-16=0
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax-21nx,a∈R
(Ⅰ)a=1时,求函数f(x)的极值;
(Ⅱ)求f(x)单调区间
(Ⅲ)设g(x)=
a+2e
x
(a>0)
,若在[1,e]上至少存在一个x0,使得f(x0)>g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=ax3-2在点x=-1处切线的倾斜角为45°,那么a的值为(  )
A.-1B.1C.
1
3
D.-
1
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+ax2+bx+c在x=1处的切线方程为y=3x+1,
(1)若函数y=f(x)在x=-2时有极值,求f(x)的表达式;
(2)在(1)条件下,若函数y=f(x)在[-2,m]上的值域为[
95
27
,13
],求m的取值范围;
(3)若函数y=f(x)在区间[-2,1]上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=ax3+bx2+cx+d的图象在x=0处的切线方程24x+y-12=0则c+2d=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N+).
(1)请写出fn(x)的表达式(不需证明);
(2)求fn(x)的极小值;
(3)设gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值为a,fn(x)的最小值为b,求a-b的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+alnx.
(I)当a=-2时,求函数f(x)的极值;
(II)若g(x)=f(x)+
2
x
在[1,+∞)上是单调增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a为实数,函数f(x)=x3+ax2+(a-2)x的导函数是f′(x)是偶函数,则曲线y=f(x)在原点处的切线方程为(  )
A.y=-3xB.y=-2xC.y=3xD.y=2x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3-
a+1
2
x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点.
(Ⅰ)当a=1时,求函数f(x)的图象在x=3处的切线方程;
(Ⅱ)若存在x<0,使得f′(x)=-9,求a的最大值;
(Ⅲ)当a>0时,求函数f(x)的零点个数.

查看答案和解析>>

同步练习册答案