精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+c在x=1处的切线方程为y=3x+1,
(1)若函数y=f(x)在x=-2时有极值,求f(x)的表达式;
(2)在(1)条件下,若函数y=f(x)在[-2,m]上的值域为[
95
27
,13
],求m的取值范围;
(3)若函数y=f(x)在区间[-2,1]上单调递增,求b的取值范围.
(1)f′(x)=3x2+2ax+b
∵曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1.
f′(1)=3
f(1)=4
3+2a+b=3
1+a+b+c=4

∵函数y=f(x)在x=-2时有极值
∴f′(-2)=0即-4a+b=-12
3+2a+b=3
1+a+b+c=4
-4a+b=-12

解得a=2,b=-4,c=5
∴f(x)=x3+2x2-4x+5
(2)由(1)得:f(x)=x3+2x2-4x+5,画出它的图象,如图,
由图可知,
若函数y=f(x)在[-2,m]上的值域为[
95
27
,13
],
m的取值范围是:[
5
3
,2].
(3)由(1)知,2a+b=0
∴f′(x)=3x2-bx+b
∵函数y=f(x)在区间[-2,1]上单调递增
∴f′(x)≥0即3x2-bx+b≥0在[-2,1]上恒成立
①当x=
b
6
≥1时
f′(x)的最小值为f′(1)=1-b+b≥0∴b≥6
②当x=
b
6
≤-2时,f′(x)的最小值为
f′(-2)=12+2b+b≥0∴b∈∅
③-2<
b
6
<1时
,f′(x)的最小值为
12b-b2
12
≥0
∴0≤b≤6
总之b的取值范围是b≥0
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

与直线2x-y+3=0垂直的抛物线C:y=x2+1的切线方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
m2
3
x3-
3
2
x2
+(m+1)x+1.
(1)若函数f(x)在x=1处取得极大值,求函数f(x)的单调递增区间;
(2)若对任意实数m∈(0,+∞),不等式f'(x)>x2m2-(x2+1)m+x2-x+1恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线y=a与函数f(x)=x3-3x的图象有相异的三个交点,求常数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=ln(2x-1)上的点到直线2x-y+8=0的最短距离是(  )
A.
5
B.2
5
C.3
5
D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-ax2+(a-2)x.
(Ⅰ)若曲线y=f(x)在(1,f(1))处的切线与直线x=1垂直,求实数a的值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-3x,
(1)求函数f(x)在[-3,
3
2
]
上的最大值和最小值.
(2)求曲线y=f(x)在点P(2,f(2))处的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=exlnx在点(1,f(1))处的切线方程是(  )
A.y=2e(x-1)B.y=ex-1C.y=e(x-1)D.y=x-e

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点P是曲线y=x2-lnx上一点,且在点P处的切线与直线y=x-2平行,则点P的横坐标为______.

查看答案和解析>>

同步练习册答案