精英家教网 > 高中数学 > 题目详情
设函数f(x)=
m2
3
x3-
3
2
x2
+(m+1)x+1.
(1)若函数f(x)在x=1处取得极大值,求函数f(x)的单调递增区间;
(2)若对任意实数m∈(0,+∞),不等式f'(x)>x2m2-(x2+1)m+x2-x+1恒成立,求x的取值范围.
(1)f′(x)=m2x2-3x+(m+1).
由条件知f′(1)=0
所以m2+m-2=0
故m=1或m=-2
当m=-2时,f(x)在x=1处取得极小值;
当m=1时,f(x)在x=1处取得极大值;
综上可知,m=1
f′(x)=x2-3x+2.
由f′(x)≥0,得x≤1或x≥2;
故f(x)的单调递增区间为(-∞,1],[2,+∞).
(2)由已知知,m2x2-3x+(m+1)>x2m2-(x2+1)m+x2-x+1恒成立.
即m(x2+2)-x2-2x>0对任意m∈(0,+∞)恒成立
由m(x2+2)-x2-2x>0,及x2+2>0,
可知对任意m∈(0,+∞),m>
x2+2x
x2+2
恒成立.
x2+2x
x2+2
≤0

又x2+2>0恒成立,
所以,x2+2x≤0,
即-2≤x≤0,
故原不等式恒成立的x的取值范围是-2≤x≤0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

函数时有(       )
A.极小值B.极大值C.既有极大值,也有极小值D.不存在极值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax-21nx,a∈R
(Ⅰ)a=1时,求函数f(x)的极值;
(Ⅱ)求f(x)单调区间
(Ⅲ)设g(x)=
a+2e
x
(a>0)
,若在[1,e]上至少存在一个x0,使得f(x0)>g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x2+bx+c的图象与x轴相切于点(3,0),函数g(x)=-2x+6,则这两个函数图象围成的区域面积为(  )
A.
2
3
B.
4
3
C.2D.
8
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设点A(x1,f(x1)),B(x2,f(x2)),T(x0,f(x0))在函数f(x)=x3-ax(a>0)的图象上,其中x1,x2是f(x)的两个极值点,x0(x0≠0)是f(x)的一个零点,若函数f(x)的图象在T处的切线与直线AB垂直,则a=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若f(x)=x3+3ax2+3(a+2)x+1有三个单调区间,则a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=ax3-2在点x=-1处切线的倾斜角为45°,那么a的值为(  )
A.-1B.1C.
1
3
D.-
1
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+ax2+bx+c在x=1处的切线方程为y=3x+1,
(1)若函数y=f(x)在x=-2时有极值,求f(x)的表达式;
(2)在(1)条件下,若函数y=f(x)在[-2,m]上的值域为[
95
27
,13
],求m的取值范围;
(3)若函数y=f(x)在区间[-2,1]上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a为实数,函数f(x)=x3+ax2+(a-2)x的导函数是f′(x)是偶函数,则曲线y=f(x)在原点处的切线方程为(  )
A.y=-3xB.y=-2xC.y=3xD.y=2x

查看答案和解析>>

同步练习册答案