精英家教网 > 高中数学 > 题目详情
已知函数f(x)=4x3-3x2sinθ+
1
32
,其中x∈R,θ∈(0,π).
(Ⅰ)若f′(x)的最小值为-
3
4
,试判断函数f(x)的零点个数,并说明理由;
(Ⅱ)若函数f(x)的极小值大于零,求θ的取值范围.
(I)f'(x)=12x2-6xsinθ,
x=
sinθ
4
时,f'(x)有最小值为f′(x)=-
3
4
sin2θ

所以-
3
4
sin2θ=-
3
4
,即sin2θ=1,
因为θ∈(0,π),所以sinθ=1,
所以f'(x)=12x2-6x,
所以f(x)在(0,
1
2
)
上是减函数,在(-∞,0),(
1
2
,+∞)
上是增函数,
f(0)=
1
32
>0
f(
1
2
)=-
7
32
<0

故函数f(x)的零点个数有3个;
(Ⅱ)f'(x)=12x2-6xsinθ
令f'(x)=0,解得x1=0,x2=
sinθ
2

由θ∈(0,π)知sinθ>0,根据(I),当x变化时,f'(x)的符号及f(x)的变化情况如下表:
  x(-∞,0)0(0,
sinθ
2
)
sinθ
2
(
sinθ
2
,+∞)
f'(x)+0-0+
f(x)极大值极小值
因此,函数f(x)在x=
sinθ
2
处取得极小值f(
sinθ
2
)=-
1
4
sin3θ+
1
32

要使f(
sinθ
2
)>0
,必有-
1
4
sin3θ+
1
32
>0

整理得0<sinθ<
1
2
,又θ∈(0,π),
解得θ∈(0,
π
6
)∪(
6
,π)

所以θ的取值范围是θ∈(0,
π
6
)∪(
6
,π)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若函数y1=sin(2x1)+
1
2
(x1∈[0,π]),函数y2=x2+3,则(x1-x22+(y1-y22的最小值为(  )
A.
2
12
π+
5
2
-
6
4
B.
2
12
π
C.(
5
2
-
6
4
2
D.
(π-3
3
+15)
2
72

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ex,g(x)=lnx.
(Ⅰ)求证:g(x)<x<f(x);
(Ⅱ)设直线l与f(x)、g(x)均相切,切点分别为(x1,f(x1))、(x2,g(x2)),且x1>x2>0,求证:x1>1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,则
lim
n→+∞
n2[f(n+1)-f(n)]
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

an为(1+x)n+1的展开式中含xn-1项的系数,则
lim
n→∞
(
1
a1
+
1
a2
+…+
1
an
)
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-x3+ax2-4,(a∈R)
(Ⅰ)若y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为
π
4
,求a;
(Ⅱ)设f(x)的导函数是f′(x),在(Ⅰ)的条件下,若m,n∈[-1,1],求f(m)+f′(n)的最小值.
(Ⅲ)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3+ax+b
(a,b∈R)在x=2处取得极小值-
4
3

(Ⅰ)求f(x);
(Ⅱ)求函数f(x)在[-4,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+3ax-1,g(x)=f′(x)-ax-5,其中f′(x)是的f(x)的导函数.
(Ⅰ)对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;
(Ⅱ)设a=-m2,当实数m在什么范围内变化时,函数y=f(x)的图象与直线y=3只有一个公共点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4.
(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;
(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.

查看答案和解析>>

同步练习册答案