精英家教网 > 高中数学 > 题目详情
an为(1+x)n+1的展开式中含xn-1项的系数,则
lim
n→∞
(
1
a1
+
1
a2
+…+
1
an
)
=______.
由题意可得 an=
Cn-1n+1
=
C2n+1
=
n(n+1)
2

1
an
=
2
n(n+1)
=2(
1
n
-
1
n+1
),
lim
n→∞
(
1
a1
+
1
a2
+…+
1
an
)
=
lim
n→∞
2[(
1
1
-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1
)]=
lim
n→∞
2(1-
1
n+1
)=2,
故答案为:2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2x3-3x2+3.
(1)求曲线y=f(x)在点x=2处的切线方程;
(2)若关于x的方程f(x)+m=0有三个不同的实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx,g(x)=
1
2
ax2+bx(a≠0)
(I)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(II)若a=2,b=1,若函数k=g(x)-2f(x)-x2在[1,3]上恰有两个不同零点,求实数k的取值范围;
(III)设函数f(x)的图象C1与函数g(x)的图象C2交于P,Q两点,过线段PQ的中点R作x轴的垂线分别交C1、C2于M、N两点,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=x3-
9
2
x2+6x+m2,其中m∈R,
(1)若函数f(x)在点(0,f(0))处的切线过点(-1,2),求m的值;
(2)若?x∈[0,3],f(x)≤m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

己知函数f(x)=ax3+bx2+c,其导数f′(x)的图象如图所示,则函数f(x)的极大值是(  )
A.a+b+cB.8a+4b+cC.3a+2bD.c

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=4x3-3x2sinθ+
1
32
,其中x∈R,θ∈(0,π).
(Ⅰ)若f′(x)的最小值为-
3
4
,试判断函数f(x)的零点个数,并说明理由;
(Ⅱ)若函数f(x)的极小值大于零,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax-lnx
(I)当a=1时,求f(x)的最小值;
(Ⅱ)当a>0时,求f(x)在[1,e]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-3x2-9x+1
(1)求函数在区间[-4,4]上的单调性.
(2)求函数在区间[-4,4]上的极大值和极小值与最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
1
3
ax3+
1
2
bx2
+cx+d的图象过原点,且在点(-1,f(-1))处的切线与x轴平行.对任意x∈R,都有x≤f′(x)≤
1
2
(x2+1)

(1)求函数y=f(x)在点(1,f(1))处切线的斜率;
(2)求f(x)的解析式;
(3)设g(x)=12f(x)-4x2-3x-3,h(x)=
m
x
+x•lnx,对任意x1x2∈[
1
2
,2]
,都有h(x1)≥g(x2),求实数m的取值范围.

查看答案和解析>>

同步练习册答案