精英家教网 > 高中数学 > 题目详情
已知f(x)=
1
3
ax3+
1
2
bx2
+cx+d的图象过原点,且在点(-1,f(-1))处的切线与x轴平行.对任意x∈R,都有x≤f′(x)≤
1
2
(x2+1)

(1)求函数y=f(x)在点(1,f(1))处切线的斜率;
(2)求f(x)的解析式;
(3)设g(x)=12f(x)-4x2-3x-3,h(x)=
m
x
+x•lnx,对任意x1x2∈[
1
2
,2]
,都有h(x1)≥g(x2),求实数m的取值范围.
(1)∵函数y=f(x)在点(1,f(1))处切线的斜率为k=f'(1),
又x≤f′(x)≤
1
2
(x2+1)
,∴1≤f′(1)≤
1
2
(1+1)
,∴k=f'(1)=1;
(2)∵f(x)=
1
3
ax3+
1
2
bx2
+cx+d,∴f′(x)=ax2+bx+c,
由f′(1)=1且f′(-1)=0,得a+b+c=1,且a-b+c=0;
b=
1
2
c=
1
2
-a

∵对x∈R,x≤f′(x)恒成立.即:ax2-
1
2
x+
1
2
-a≥0
恒成立,
a>0
△=
1
4
-4a(
1
2
-a)=4a2-2a+
1
4
≤0

a=
1
4
,∴f(x)=
1
12
x3+
1
4
x2+
1
4
x

(3)∵g(x)=12f(x)-4x2-3x-3,
∴g(x)=x3+3x2+3x-4x2-3x-3=x3-x2-3;
∴g(x)max=g(2)=1,
∴对[
1
2
,2]
,h(x)≥1恒成立
即:m≥x-x2•lnx,
令p(x)=x-x2lnx,则p'(x)=1-2x•lnx-x.
由p'(1)=0,得x∈(1,2)时,p′(x)<0,x∈(
1
2
,1)时,p′(x)>0;
∴p(x)max=p(1)=1,
∴m≥1,即m的取值范围是{x|m≥1}.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

an为(1+x)n+1的展开式中含xn-1项的系数,则
lim
n→∞
(
1
a1
+
1
a2
+…+
1
an
)
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax-1-lnx(a∈R).
(Ⅰ)讨论函数f(x)在定义域内的极值点的个数;
(Ⅱ)若函数f(x)在x=1处取得极值,对?x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围;
(Ⅲ)当0<x<y<e2且x≠e时,试比较
y
x
1-lny
1-lnx
的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-x
(1)求f(x)的单调区间;
(2)若不等式af(x)≥x-
1
2
x2在x∈(0,+∞)内恒成立,求实数a的取值范围;
(3)n∈N+,求证:
1
ln2
+
1
ln3
+…+
1
ln(n+1)
n
n+1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
1
2
x2ex

(1)求该函数的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4.
(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;
(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=alnx-ax-3(a∈R),
(1)若函数y=f(x)在点(2,f(2))处的切线斜率为1,求a的值;
(2)在(1)的条件下,对任意t∈[1,2],函数g(x)=x3+x2[
m
2
+f′(x)]在区间(t,3)总存在极值,求m的取值范围;
(3)若a=2,对于函数h(x)=(p-2)x-
p+2e
x
-3在[1,e]上至少存在一个x0使得h(x0)>f(x0)成立,求实数P的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-3ax2+2bx在x=1处有极小值-1,试求a,b的值,
(1)并求出f(x)的单调区间
(2)在区间[-2,2]上的最大值与最小值
(3)若关于x的方程f(x)=α有3个不同实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

计算定积分:=_______.

查看答案和解析>>

同步练习册答案