精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-3ax2+2bx在x=1处有极小值-1,试求a,b的值,
(1)并求出f(x)的单调区间
(2)在区间[-2,2]上的最大值与最小值
(3)若关于x的方程f(x)=α有3个不同实根,求实数a的取值范围.
(1)∵f′(x)=3x2-6ax+2b,函数f(x)=x3-3ax2+2bx在x=1处有极小值-1,
∴f(1)=-1,f′(1)=0
∴1-3a+2b=-1,3-6a+2b=0
解得a=
1
3
,b=-
1
2

∴f(x)=x3-x2-x
∴f′(x)=3x2-2x-1
∴由f′(x)=3x2-2x-1>0得x∈(-∞,-
1
3
)∪(1,+∞)
由f′(x)=3x2-2x-1<0得x∈(-
1
3
,1)
∴函数f(x)的单调增区间为:(-∞,-
1
3
),(1,+∞),减区间为:(-
1
3
,1)
(2)由(1)可得函数f(x)在[-2,-
1
3
)上是增函数,在[-
1
3
,1)上是减函数,在[1,2]上是增函数
且f(-2)=-10,f(-
1
3
)=
5
27
,f(1)=-1,f(2)=2
∴函数f(x)在闭区间[-2,+2]上的最大值f(2)=2
最小值为f(-2)=-10
(3)由(1)函数f(x)的单调增区间为:(-∞,-
1
3
),(1,+∞),减区间为:(-
1
3
,1),
∴当x=-
1
3
时,函数f(x)有极大值f(-
1
3
)=
5
27
,当x=1时,函数f(x)有极小值f(1)=-1,
∴若关于x的方程f(x)=α有3个不同实根,则必有-1<a<
5
27
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

定义在R上的函数f(x)=
1
3
ax3+bx2+cx+2
同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;
②f′(x)是偶函数;
③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=[
1
3
x3-f(x)]•ex,求函数g(x)在[m,m+1]上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-3x2-9x+1
(1)求函数在区间[-4,4]上的单调性.
(2)求函数在区间[-4,4]上的极大值和极小值与最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
1
3
ax3+
1
2
bx2
+cx+d的图象过原点,且在点(-1,f(-1))处的切线与x轴平行.对任意x∈R,都有x≤f′(x)≤
1
2
(x2+1)

(1)求函数y=f(x)在点(1,f(1))处切线的斜率;
(2)求f(x)的解析式;
(3)设g(x)=12f(x)-4x2-3x-3,h(x)=
m
x
+x•lnx,对任意x1x2∈[
1
2
,2]
,都有h(x1)≥g(x2),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若对一切x∈R,不等式4x+(a-1)2x+1≥0恒成立,则a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax.
(1)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若a=2,求f(x)在闭区间[0,4]上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地方政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划建成一个矩形的高科技工业园区,已知AB⊥BC,OABC,且AB=BC=6km,AO=3km,曲线段OC是二次函数y=ax2图象的一段,如果要使矩形的相邻两边分别落在AB,BC上,且一个顶点落在曲线段OC上,问应如何规划才能使矩形工业园区BQPN的用地面积最大?并求出最大的用地面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx2+cx在点x0处取得极大值4,其导函数y=f′(x)的图象经过点(0,0),(2,0),如图,
(1)求a,b,c的值;
(2)若x∈[-1,1],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的值等于(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案