精英家教网 > 高中数学 > 题目详情
已知f(x)=x3-
9
2
x2+6x+m2,其中m∈R,
(1)若函数f(x)在点(0,f(0))处的切线过点(-1,2),求m的值;
(2)若?x∈[0,3],f(x)≤m,求m的取值范围.
(1)∵f(x)=x3-
9
2
x2+6x+m2
∴f′(x)=3x2-9x+6,
∴切线的斜率k=f′(0)=6,又切点(0,m2),
根据点斜式,可得斜线的方程为y-m2=6x,即y=6x+m2
∵函数f(x)在点(0,f(0))处的切线过点(-1,2),
∴2=6×(-1)+m2
∴m=±2
2

(2)∵?x∈[0,3],f(x)≤m,则等价于x3-
9
2
x2+6x
≤m-m2在[0,3]有解,
令g(x)=x3-
9
2
x2+6x

x3-
9
2
x2+6x
≤m-m2在[0,3]有解,即g(x)min≤m-m2
以下求g(x)在[0,3]的最小值,
令g′(x)=3x2-9x+6=0,解得x=1或x=2,
当x∈(0,1)时,g′(x)>0,即g(x)在(0,1)单调递增,
当x∈(1,2)时,g′(x)<0,即g(x)在(1,2)单调递减,
当x∈(2,3)时,g′(x)>0,即g(x)在(2,3)单调递增,
∴g(x)在x=2处取得极小值g(2)=2,
又∵g(0)=0,g(3)=
9
2

∴g(x)min=0,
∴0≤m-m2,解得0≤m≤1,
∴m的取值范围为[0,1].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知A是曲线C1:y=
a
x-2
(a>0)与曲线C2:x2+y2=5的一个公共点.若C1在A处的切线与C2在A处的切线互相垂直,则实数a的值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
2ax-a2+1
x2+1
(x∈R),其中a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a≠0时,求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ex,g(x)=lnx.
(Ⅰ)求证:g(x)<x<f(x);
(Ⅱ)设直线l与f(x)、g(x)均相切,切点分别为(x1,f(x1))、(x2,g(x2)),且x1>x2>0,求证:x1>1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)=
ex
1+ax2
,其中a为正实数
(Ⅰ)当a=
4
3
时,求f(x)的极值点;
(Ⅱ)若f(x)为R上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,则
lim
n→+∞
n2[f(n+1)-f(n)]
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

an为(1+x)n+1的展开式中含xn-1项的系数,则
lim
n→∞
(
1
a1
+
1
a2
+…+
1
an
)
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3+ax+b
(a,b∈R)在x=2处取得极小值-
4
3

(Ⅰ)求f(x);
(Ⅱ)求函数f(x)在[-4,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-x
(1)求f(x)的单调区间;
(2)若不等式af(x)≥x-
1
2
x2在x∈(0,+∞)内恒成立,求实数a的取值范围;
(3)n∈N+,求证:
1
ln2
+
1
ln3
+…+
1
ln(n+1)
n
n+1

查看答案和解析>>

同步练习册答案