精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-(2a+2)x2+bx+c,设曲线y=f(x)在与x轴交点处的切线为y=x-1,函数f(x)的导数y=f′(x)的图象关于直线x=2对称,求函数f(x)的解析式.
∵f(x)=x3-(2a+2)x2+bx+c,
∴f′(x)=3x2-4(a+1)x2+b,
∵曲线y=f(x)在与x轴交点处的切线为y=x-1,
∴曲线y=f(x)在与x轴交点为(1,0),则f(1)=-1-2a+b+c=0,f′(1)=-1-4a+b=1,①
∵函数f(x)的导数y=f′(x)的图象关于直线x=2对称,
2(a+1)
3
=2
,②
由①②解得a=2,b=10,c=-5,
∴函数f(x)=x3-6x2+10x-5.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx2-2x+c在x=-2时有极大值6,在x=1时有极小值,
(1)求a,b,c的值;
(2)求f(x)在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设定函数f(x)=
a
3
x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的两个根分别为1,4.
(Ⅰ)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;
(Ⅱ)若f(x)在(-∞,+∞)无极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3-ax2+(a2-1)x+b(a,b∈R).
(Ⅰ)若x=1为f(x)的极值点,求a的值;
(Ⅱ)若y=f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值;
(Ⅲ)当a≠0时,若f(x)在区间(-1,1)上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知曲线y=3x2+2x在点(1,5)处的切线与直线2ax-y-6=0平行,则a=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=ex(sinx-cosx),x∈(0,2013π),则函数f(x)的极大值之和为(  )
A.
e(1-e2012π)
e-1
B.
eπ(1-e2012π)
1-e
C.
eπ(1-e1006π)
1-e
D.
eπ(1-e1006π)
1-eπ

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x-1+
a
x
(a∈R,她为自然对数的底数).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)当a=1的值时,若直线l:y=kx-1与曲线y=f(x)没有公共点,求k的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=4x-x4,在[-1,2]上的最大、最小值分别为(  )
A.、f(1),f(-1)B.f(1),f(2)C.f(-1),f(2)D.f(2),f(-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数f(x)=ax3+bx2+cx+d是奇函数,且f(x)极小值=f(-
3
3
)=-
2
3
9

(1)求函数f(x)的解析式;
(2)求函数f(x)在[-1,m](m>-1)上的最大值;
(3)设函数g(x)=
f(x)
x2
,若不等式g(x)•g(kx)≥k2-
1
k
(k>0)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案