精英家教网 > 高中数学 > 题目详情
设定函数f(x)=
a
3
x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的两个根分别为1,4.
(Ⅰ)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;
(Ⅱ)若f(x)在(-∞,+∞)无极值点,求a的取值范围.
由得f′(x)=ax2+2bx+c
因为f′(x)-9x=ax2+2bx+c-9x=0的两个根分别为1,4,所以
a+2b+c-9=0
16a+8b+c-36=0
(*)
(Ⅰ)当a=3时,又由(*)式得
2b+c-6=0
8b+c+12=0

解得b=-3,c=12
又因为曲线y=f(x)过原点,所以d=0
故f(x)=x3-3x2+12x
(Ⅱ)由于a>0,所以“f(x)=
a
3
x3+bx2+cx+d
在(-∞,+∞)内无极值点”等价于“f′(x)=ax2+2bx+c≥0在(-∞,+∞)内恒成立”.
由(*)式得2b=9-5a,c=4a.
又△=(2b)2-4ac=9(a-1)(a-9)
a>0
△=9(a-1)(a-9)≤0
得a∈[1,9]
即a的取值范围[1,9]
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

函数f(x)=exlnx在点(1,f(1))处的切线方程是(  )
A.y=2e(x-1)B.y=ex-1C.y=e(x-1)D.y=x-e

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点P是曲线y=x2-lnx上一点,且在点P处的切线与直线y=x-2平行,则点P的横坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
2
ax2
+2lnx,曲线y=f(x)在x=1处的切线斜率为4.
(1)求a的值及切线方程;
(2)点P(x,y)为曲线y=f′(x)上一点,求y-x的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数y=xlnx
(1)求这个函数的导数;
(2)求这个函数的图象在点x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程x3-3x-m=0有且只有两个不同的实根,则实数m=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图为函数f(x)=
x
(0<x<1)的图象,其在点M(t,f(t))处的切线为l,l与y轴和直线y=1分别交于点P、Q,点N(0,1),若△PQN的面积为b时的点M恰好有两个,则b的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-(2a+2)x2+bx+c,设曲线y=f(x)在与x轴交点处的切线为y=x-1,函数f(x)的导数y=f′(x)的图象关于直线x=2对称,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
x2+2x+a
x
,x∈[1,+∞).
(1)当a=
1
2
时,判断证明f(x)的单调性并求f(x)的最小值;
(2)若对任意x∈[1,+∞),f(x)>1恒成立,试求实数a的取值范围.

查看答案和解析>>

同步练习册答案