精英家教网 > 高中数学 > 题目详情
某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数m与商品单价的降低值x(单位:元,0≤x<9)的平方成正比,已知商品单价降低1元时,一星期多卖出5件.
(1)将一星期的商品销售利润y表示成x的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
(1)依题意,设m=kx2,由已知有5=k•12,从而k=5,
∴m=5x2
∴y=(14-x-5)(75+5x2)=-5x3+45x2-75x+675(0≤x<9);
(2)∵y′=-15x2+90x-75=-15(x-1)(x-5),
由y′>0,得1<x<5,由y′<0,得0≤x<1或5<x<9,
可知函数y在[0,1)上递减,在(1,5)递增,在(5,9)上递减,
从而函数y取得最大值的可能位置为x=0或是x=5,
∵y(0)=675,y(5)=800,
∴当x=5时,ymax=800,
答:商品每件定价为9元时,可使一个星期的商品销售利润最大.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x-1+
a
x
(a∈R,她为自然对数的底数).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)当a=1的值时,若直线l:y=kx-1与曲线y=f(x)没有公共点,求k的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a∈R,函数f(x)=(x2-ax-a)ex
(Ⅰ)若a=1,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求函数f(x)在[-2,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数f(x)=ax3+bx2+cx+d是奇函数,且f(x)极小值=f(-
3
3
)=-
2
3
9

(1)求函数f(x)的解析式;
(2)求函数f(x)在[-1,m](m>-1)上的最大值;
(3)设函数g(x)=
f(x)
x2
,若不等式g(x)•g(kx)≥k2-
1
k
(k>0)
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

当x∈(-1,3)时不等式的x2+ax-2<0恒成立,则a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若规定
.
ab
cd
.
=ad-bc
,不等式
.
x+1x
mx-1
.
≥-2
对一切x∈(0,1]恒成立,则实数m的最大值为(  )
A.0B.2C.
5
2
D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(x+1)lnx-x+1.
(Ⅰ)若xf′(x)≤x2+ax+1,求a的取值范围;
(Ⅱ)证明:(x-1)f(x)≥0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x-1-lnx
(Ⅰ)求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)对?x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=1-x2+ln(x+1)
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若不等式f(x)>
kx
x+1
-x2(k∈N*)在(0,+∞)上恒成立,求k的最大值.

查看答案和解析>>

同步练习册答案