精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3+ax+b的图象为曲线C,直线y=kx-2与曲线C相切于点(1,0).则k=______;函数f(x)的解析式为______.
∵函数f(x)=x3+ax+b的图象为曲线C,直线y=kx-2与曲线C相切于点(1,0).
∴直线y=kx-2过点(1,0).即0=k-2即k=2
而f'(x)=3x2+a则f'(1)=3+a=2即a=-1,f(1)=1+a+b=0即b=0
∴函数f(x)的解析式为f(x)=x3-x
故答案为:2,f(x)=x3-x
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-x2+ax+1-lnx.
(Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)若f(x)既有极大值又有极小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数y=
x3
3
-x2+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是(  )
A.
π
4
B.
π
6
C.
6
D.
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时,f(x)取得极值-2.
(I)求函数f(x)的解析式;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当x∈[-3,3]时,f(x)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x3-2x2-4x-7,其导函数为f′(x).
①f(x)的单调减区间是(
2
3
,2)

②f(x)的极小值是-15;
③当a>2时,对任意的x>2且x≠a,恒有f(x)>f(a)+f′(a)(x-a)
④函数f(x)满足f(
2
3
-x)+f(
2
3
+x)=0

其中假命题的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3处取得极值.
(1)求f(x)的解析式;
(2)求f(x)在点A(1,16)处的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-4x2+5x-4.
(1)求曲线f(x)在x=2处的切线方程;
(2)求经过点A(2,-2)的曲线f(x)的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2x3-3x2+3.
(1)求曲线y=f(x)在点x=2处的切线方程;
(2)若关于x的方程f(x)+m=0有三个不同的实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx,g(x)=
1
2
ax2+bx(a≠0)
(I)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(II)若a=2,b=1,若函数k=g(x)-2f(x)-x2在[1,3]上恰有两个不同零点,求实数k的取值范围;
(III)设函数f(x)的图象C1与函数g(x)的图象C2交于P,Q两点,过线段PQ的中点R作x轴的垂线分别交C1、C2于M、N两点,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案