精英家教网 > 高中数学 > 题目详情
lim
△x→0
f(x0+2△x)-f(x0)
△x
=1,则f′(x0)等于(  )
A.2B.-2C.
1
2
D.-
1
2
根据导数的定义可得,f(x0)=
lim
△x→0
f(x0+2△x)-f(x0)
2△x
=
1
2
lim
△x→0
f(x0+2△x)-f(x0)
△x
=
1
2

故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

方程x3-3x+a+1=0在x∈[-2,+∞)上有三个不同的实根,则实数a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知曲线y=
1
3
x3+
1
2
x2+4x-7在点Q处的切线的倾斜角α满足sin2α=
16
17
,则此切线的方程为(  )
A.4x-y+7=0或4x-y-6
5
6
=0
B.4x-y-6
5
6
=0
C.4x-y-7=0或4x-y-6
5
6
=0
D.4x-y-7=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若曲线C:y=x3-2ax2+2ax上任意点处的切线的倾斜角都为锐角,那么整数a的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=x3+ax2+ax(x∈R)不存在极值点,则a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
2ax-a2+1
x2+1
(x∈R),其中a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a≠0时,求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=xe-x(x∈R)
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);
(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)=
ex
1+ax2
,其中a为正实数
(Ⅰ)当a=
4
3
时,求f(x)的极值点;
(Ⅱ)若f(x)为R上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1+lnx
x

(1)设a>0,若函数f(x)在区间(a,a+
1
2
)上存在极值,求实数a的取值范围;
(2)如果当x≥1时,不等式f(x)≥
k2-k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案