精英家教网 > 高中数学 > 题目详情
方程x3-3x+a+1=0在x∈[-2,+∞)上有三个不同的实根,则实数a的取值范围为______.

f(x)=x3-3x+a+1,f'(x)=3x2-3=3(x+1)(x-1),
当x∈(-∞,-1),f'(x)>0;
x∈(-1,1),f'(x)<0;
x∈(1,+∞),f'(x)>0.
∴f(x)在x=-1取极大值3+a,在x=1时取极小值a-1.
根据f(x)的大致图象的变化情况,有三个不同的实数解时,
f(-1)>0
f(1)<0
f(-2)<0

解得a的取值范围是-3<a<1.
故答案为:-3<a<1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=x3+x2,曲线y=f(x)在点(2,f(2))处的切线方程______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=x3+1在点(-1,0)处的切线方程为(  )
A.3x+y+3=0B.3x-y+3=0C.3x-y=0D.3x-y-3=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数y=
x3
3
-x2+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是(  )
A.
π
4
B.
π
6
C.
6
D.
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
lnx+k
ex
(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)是f(x)的导函数.证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时,f(x)取得极值-2.
(I)求函数f(x)的解析式;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当x∈[-3,3]时,f(x)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x3-2x2-4x-7,其导函数为f′(x).
①f(x)的单调减区间是(
2
3
,2)

②f(x)的极小值是-15;
③当a>2时,对任意的x>2且x≠a,恒有f(x)>f(a)+f′(a)(x-a)
④函数f(x)满足f(
2
3
-x)+f(
2
3
+x)=0

其中假命题的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-4x2+5x-4.
(1)求曲线f(x)在x=2处的切线方程;
(2)求经过点A(2,-2)的曲线f(x)的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

lim
△x→0
f(x0+2△x)-f(x0)
△x
=1,则f′(x0)等于(  )
A.2B.-2C.
1
2
D.-
1
2

查看答案和解析>>

同步练习册答案