精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
lnx+k
ex
(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)是f(x)的导函数.证明:对任意x>0,g(x)<1+e-2
(Ⅰ)f′(x)=
1
x
-lnx-k
ex

依题意,∵曲线y=f(x) 在点(1,f(1))处的切线与x轴平行,
f′(1)=
1-k
e
=0,
∴k=1为所求.
(Ⅱ)k=1时,f′(x)=
1
x
-lnx-1
ex
(x>0)
记h(x)=
1
x
-lnx-1,函数只有一个零点1,且当x>1时,h(x)<0,当0<x<1时,h(x)>0,
∴当x>1时,f′(x)<0,∴原函数在(1,+∞)上为减函数;当0<x<1时,f′(x)>0,
∴原函数在(0,1)上为增函数.
∴函数f(x)的增区间为(0,1),减区间为(1,+∞).
(Ⅲ)证明:g(x)=(x2+x)f′(x)=
1+x
ex
(1-xlnx-x),先研究1-xlnx-x,再研究
1+x
ex

①记r(x)=1-xlnx-x,x>0,∴r′(x)=-lnx-2,令r′(x)=0,得x=e-2
当x∈(0,e-2)时,r′(x)>0,r(x)单增;
当x∈(e-2,+∞)时,r′(x)<0,r(x)单减.
∴r(x)max=r(e-2)=1+e-2,即1-xlnx-x≤1+e-2
②记s(x)=
1+x
ex
,x>0,
s′(x)=-
x
ex
<0,∴s(x)在(0,+∞)单减,
∴s(x)<s(0)=1,即
1+x
ex
<1.
综①、②知,g(x))=
1+x
ex
(1-xlnx-x)≤(
1+x
ex
)(1+e-2)<1+e-2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R,若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ax3+bx2+cx+d为奇函数,且在点(2,f(2))处的切线方程为9x-y-16=0.
(1)求f(x)的解析式;
(2)若y=f(x)+m的图象与x轴仅有一个公共点,求m的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3+
1
2
ax2
+2bx+c在R上可导.
(1)若f(x)在区间[-1,2]上为减函数,且b=3a,求a的取值范围;
(2)若f(x)的极大值点在(0,1)内,极小值点在(1,2)内,求
b-2
a-1
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=x3的切线的斜率等于1,则其切线方程有(  )
A.1个B.2个C.多于两个D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程x3-3x+a+1=0在x∈[-2,+∞)上有三个不同的实根,则实数a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,函数f(x)的图象是折线段ABC,其A,B,C的坐标分别为(0,4),(2,0),(6,4),则
lim
△x→0
f(1+△x)-f(1)
△x
=______.(用数字作答)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx+c在x=1处取得极值c-4.
(1)求a,b;
(2)设函数y=f(x)为R上的奇函数,求函数f(x)在区间(-2,0)上的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=x3+ax2+ax(x∈R)不存在极值点,则a的取值范围是______.

查看答案和解析>>

同步练习册答案