精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx+c在x=1处取得极值c-4.
(1)求a,b;
(2)设函数y=f(x)为R上的奇函数,求函数f(x)在区间(-2,0)上的极值.
(1)∵f(x)=ax3+bx+c,
∴f′(x)=3ax2+b;
又f(x)在x=1处取得极值c-4,
f(1)=c-4
f′(1)=0
,即
a+b+c=c-4
3a+b=0
,∴
a=2
b=-6

(2)∵y=f(x)为R上的奇函数,
∴f(-x)=-f(x),即a(-x)3+b(-x)+c=-(ax3+bx+c),
∴c=0,∴f(x)=2x3-6x;
∴f′(x)=6x2-6=6(x+1)(x-1),
令f′(x)=0,得x=-1或x=1,∵x∈(-2,0),∴取x=-1;
∴当x∈(-2,-1),f′(x)>0,当x∈(-1,0)时,f′(x)<0;
∴f(x)在x=-1处有极大值为f(-1)=-2+6=4,无极小值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设曲线f(x)=ax2+4,若x=1处切线斜率为2,则a的值为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
lnx+k
ex
(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)是f(x)的导函数.证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x3-2x2-4x-7,其导函数为f′(x).
①f(x)的单调减区间是(
2
3
,2)

②f(x)的极小值是-15;
③当a>2时,对任意的x>2且x≠a,恒有f(x)>f(a)+f′(a)(x-a)
④函数f(x)满足f(
2
3
-x)+f(
2
3
+x)=0

其中假命题的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点P是曲线y=x2-lnx上任意一点,则点P到直线x-y-4=0的距离的最小值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-4x2+5x-4.
(1)求曲线f(x)在x=2处的切线方程;
(2)求经过点A(2,-2)的曲线f(x)的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设曲线f(x)=
1
3
x3-
a
2
x2+1
(其中a>0)在点(x1,f(x1))及(x2,f(x2))处的切线都过点(0,2).证明:当x1≠x2时,f′(x1)≠f′(x2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某质点的运动方程为s(t)=t3+bt2+ct+d,如图是其运动轨迹的一部分,若t∈[
1
2
,4]时,s(t)<3d2恒成立,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[-1,0],x2∈[1,2].
(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;
(2)证明:-10≤f(x2)≤-
1
2

查看答案和解析>>

同步练习册答案