精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx+c在x=2处取得极值为c=16.
(1)求a、b的值;
(2)若f(x)有极大值28,求f(x)在[-3,3]上的最大值.
(1)因为f(x)=ax3+bx+c,故f′(x)=3ax2+b,
由于f(x)在点x=2处取得极值,故有
f′(2)=0
f(2)=c-16
,即
12a+b=0
8a+2b+c=c-16

化简得
12a+b=0
4a+b=-8
,解得
a=1
b=-12

(2)由(1)知f(x)=x3-12x+c,f′(x)=3x2-12,
令f′(x)=0,得x=2或x=-2,
当x∈(-∞,-2)时,f′(x)>0,f(x)在∈(-∞,-2)上为增函数;当x∈(-2,2)时,f′(x)<0,f(x)在(-2,2)上为减函数;
当x∈(2,+∞)时,f′(x)>0,f(x)在(2,+∞)上为增函数.
由此可知f(x)在x=-2处取得极大值f(-2)=16+c,f(x)在x=2处取得极小值f(2)=-16+c.
由题意知16+c=28,解得c=12.此时,f(-3)=21,f(3)=3,f(2)=-4,
所以f(x)在[-3,3]上的最大值为28.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=xe-x(x∈R)
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);
(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如果函数f(x)在x=x0处取得极值,则点(x0,f(x0))称为函数f(x)的一个极值点.已知函数f(x)=ax3+bx2+cx+d(a≠0,a,b,c,d∈R)的一个极值点恰为坐标系原点,且y=f(x)在x=1处的切线方程为3x+y-1=0.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-2,2]上的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1+lnx
x

(1)设a>0,若函数f(x)在区间(a,a+
1
2
)上存在极值,求实数a的取值范围;
(2)如果当x≥1时,不等式f(x)≥
k2-k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-
a
x

(Ⅰ)若a>0,试判断f(x)在定义域内的单调性;
(Ⅱ)若f(x)在[1,e]上的最小值为
3
2
,求a的值;
(Ⅲ)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax-1-lnx(a∈R).
(Ⅰ)讨论函数f(x)在定义域内的极值点的个数;
(Ⅱ)若函数f(x)在x=1处取得极值,对?x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围;
(Ⅲ)当0<x<y<e2且x≠e时,试比较
y
x
1-lny
1-lnx
的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用半径为R的圆形铁皮剪出一个圆心角为α的扇形,制成一个圆锥形容器,求:扇形的圆心角多大时,容器的容积最大?并求出此时容器的最大容积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
1
2
x2ex

(1)求该函数的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=alnx-bx2(x>0),若函数f(x)在x=1处与直线y=-
1
2
相切.
(1)求实数a,b的值;
(2)求函数f(x)在[
1
e
,e]上的最大值.

查看答案和解析>>

同步练习册答案