精英家教网 > 高中数学 > 题目详情
设函数f(x)=alnx-bx2(x>0),若函数f(x)在x=1处与直线y=-
1
2
相切.
(1)求实数a,b的值;
(2)求函数f(x)在[
1
e
,e]上的最大值.
(1)∵函数f(x)=alnx-bx2(x>0),∴f′(x)=
a
x
-2bx,
∵函数f(x)在x=1处与直线y=-
1
2
相切,
f′(1)=a-2b=0
f(1)=-b=-
1
2
,解得
a=1
b=
1
2

(2)f(x)=lnx-
1
2
x2,f′(x)=
1-x2
x

1
e
≤x≤e时,令f'(x)>0得
1
e
≤x<1,
令f'(x)<0,得1<x≤e,
∴f(x)在[
1
e
,1],上单调递增,
在[1,e]上单调递减,
∴f(x)max=f(1)=-
1
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx+c在x=2处取得极值为c=16.
(1)求a、b的值;
(2)若f(x)有极大值28,求f(x)在[-3,3]上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
2
x2+lnx.
(1)求函数f(x)的单调区间;
(2)求证:当x>1时,
1
2
x2+lnx<
2
3
x3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax.
(1)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若a=2,求f(x)在闭区间[0,4]上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函f(x)=x3+ax2+bx+5,若x=
2
3
,y=f(x)有极值,且曲线y=f(x)在点(1,f(1))处的切线斜率为3.
(1)求函数f(x)的解析式;
(2)求y=f(x)在[-4,1]上的最大值和最小值.
(3)函数y=f(x)-m有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx2+cx在点x0处取得极大值4,其导函数y=f′(x)的图象经过点(0,0),(2,0),如图,
(1)求a,b,c的值;
(2)若x∈[-1,1],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=alnx+x2(a为实常数).
(1)若a=-2,求证:函数f(x)在(1,+∞)上是增函数;
(2)求函数f(x)在[1,e]上的最小值及相应的x值;
(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=xex,其中x∈R.
(Ⅰ)求曲线f(x)在点(x0,x0ex0)处的切线方程
(Ⅱ)如果过点(a,b)可作曲线y=f(x)的三条切线
(1)当-2<a<0时,证明:-
1
e2
(a+4)<b<f(a);
(2)当a<-2时,写出b的取值范围(不需要书写推证过程).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在R上可导,,则(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案