精英家教网 > 高中数学 > 题目详情
已知函数f(x)=xex,其中x∈R.
(Ⅰ)求曲线f(x)在点(x0,x0ex0)处的切线方程
(Ⅱ)如果过点(a,b)可作曲线y=f(x)的三条切线
(1)当-2<a<0时,证明:-
1
e2
(a+4)<b<f(a);
(2)当a<-2时,写出b的取值范围(不需要书写推证过程).
(Ⅰ)∵f(x)=xex
∴f′(x)=(x+1)ex
∴曲线f(x)在点(x0,x0ex0)处的切线的斜率k=f′(x0)=(x0+1)ex0
由点斜式写出切线方程为y-x0ex0=(x0+1)ex0(x-x0),即y=(x0+1)ex0x-x02ex0
(Ⅱ)(1)如果切线过点(a,b),则存在x0,使b=(x0+1)ex0a-x02ex0
于是,若过点(a,b)可作曲线y=f(x)的三条切线,则方程(x02-ax0-a)ex0+b=0有三个相异的实数根.
记g(x0)=(x02-ax0-a)ex0+b,则g'(x0)=[x02+(2-a)x0-2a]ex0
令g'(x0)=0,解得x0=-2,或x0=a∈(-2,0)
当x0∈(-∞,-2),(a,+∞)时g'(x0)>0,
当x0∈(-2,a)时g'(x0)<0,
∴当x0=-2时,g(x0)取极大值,当x0=a时,g(x0)取极小值,
如果过(a,b)可作曲线y=f(x)三条切线,即g(x0)=0有三个相异的实数根,则
g(-2)>0
g(a)<0

(4+a)e-2+b>0
-aea+b<0
,则
b>-
1
e2
(a+4)
b<aea=f(a)

即-
1
e2
(a+4)<b<f(a);
(2)令g'(x0)=0,解得x0=-2,或x0=a∈(-∞,-2)
当x0∈(-∞,a),(-2,+∞)时g'(x0)>0,
当x0∈(a,-2)时g'(x0)<0,
∴当x0=a时,g(x0)取极大值,当x0=-2时,g(x0)取极小值,
如果过(a,b)可作曲线y=f(x)三条切线,即g(x0)=0有三个相异的实数根,则
g(-2)<0
g(a)>0

即f(a)<b<-
1
e2
(a+4).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
1
2
x2ex

(1)求该函数的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=alnx-bx2(x>0),若函数f(x)在x=1处与直线y=-
1
2
相切.
(1)求实数a,b的值;
(2)求函数f(x)在[
1
e
,e]上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=a(lnx-x)(a∈R).
(I)讨论函数f(x)的单调性;
(II)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,函数g(x)=x3+x2[
m
2
+f′(x)]
在区间(2,3)上总存在极值,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=-
1
2
ax2+x-ln(1+x)
,其中a>0.
(1)若x=3是函数f(x)的极值点,求a的值;
(2)求f(x)的单调区间;
(3)若f(x)在[0,+∞)上的最大值是0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

A、B两地相距1千米,B、C两地相距3千米,甲从A地出发,经过B前往C地,乙同时从B地出发,前往C地.甲、乙的速度关于时间的关系式分别为(单位:千米/小时).甲、乙从起点到终点的过程中,给出下列描述:
①出发后1小时,甲还没追上乙             ② 出发后1小时,甲乙相距最远
③甲追上乙后,又被乙追上,乙先到达C地   ④甲追上乙后,先到达C地 
其中正确的是         .(请填上所有描述正确的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,抛物线与直线围成的封闭区域为M,则区域M的面积为(   )
A.6B.C.D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

计算定积分:=_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(   )
A.B.C.D.1

查看答案和解析>>

同步练习册答案