精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
x2+lnx.
(1)求函数f(x)的单调区间;
(2)求证:当x>1时,
1
2
x2+lnx<
2
3
x3
(1)依题意知函数的定义域为{x|x>0},
∵f′(x)=x+
1
x
,∴f′(x)>0,
∴f(x)的单调增区间为(0,+∞).
(2)证明:设g(x)=
2
3
x3-
1
2
x2-lnx,
∴g′(x)=2x2-x-
1
x

∵当x>1时,g′(x)=
(x-1)(2x2+x+1)
x
>0,
∴g(x)在(1,+∞)上为增函数,
∴g(x)>g(1)=
1
6
>0,
∴当x>1时,
1
2
x2+lnx<
2
3
x3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如果函数f(x)在x=x0处取得极值,则点(x0,f(x0))称为函数f(x)的一个极值点.已知函数f(x)=ax3+bx2+cx+d(a≠0,a,b,c,d∈R)的一个极值点恰为坐标系原点,且y=f(x)在x=1处的切线方程为3x+y-1=0.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-2,2]上的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用半径为R的圆形铁皮剪出一个圆心角为α的扇形,制成一个圆锥形容器,求:扇形的圆心角多大时,容器的容积最大?并求出此时容器的最大容积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
1
2
x2ex

(1)求该函数的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax-lnx,g(x)=
lnx
x
,它们的定义域都是(0,e],其中e≈2.718,a∈R
( I)当a=1时,求函数f(x)的单调区间;
( II)当a=1时,对任意x1,x2∈(0,e],求证:f(x1)>g(x2)+
17
27

( III)令h(x)=f(x)-g(x)•x,问是否存在实数a使得h(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=alnx-ax-3(a∈R),
(1)若函数y=f(x)在点(2,f(2))处的切线斜率为1,求a的值;
(2)在(1)的条件下,对任意t∈[1,2],函数g(x)=x3+x2[
m
2
+f′(x)]在区间(t,3)总存在极值,求m的取值范围;
(3)若a=2,对于函数h(x)=(p-2)x-
p+2e
x
-3在[1,e]上至少存在一个x0使得h(x0)>f(x0)成立,求实数P的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=九x2+lnx.
(Ⅰ)当九=-1时,求函数y=f(x)的7象在点(1,f(1))处的切线方程;
(Ⅱ)已知九<0,若函数y=f(x)的7象总在直线y=-
1
2
的下方,求九的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=alnx-bx2(x>0),若函数f(x)在x=1处与直线y=-
1
2
相切.
(1)求实数a,b的值;
(2)求函数f(x)在[
1
e
,e]上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

A、B两地相距1千米,B、C两地相距3千米,甲从A地出发,经过B前往C地,乙同时从B地出发,前往C地.甲、乙的速度关于时间的关系式分别为(单位:千米/小时).甲、乙从起点到终点的过程中,给出下列描述:
①出发后1小时,甲还没追上乙             ② 出发后1小时,甲乙相距最远
③甲追上乙后,又被乙追上,乙先到达C地   ④甲追上乙后,先到达C地 
其中正确的是         .(请填上所有描述正确的序号)

查看答案和解析>>

同步练习册答案