精英家教网 > 高中数学 > 题目详情

选修4-1:几何证明选讲
如图,在△ABC中,∠A=60°,AB>AC,点O是外心,两条高 BE,CF交于H点,点M,N分别在线段BH,FH上,且满足BM=CN,求数学公式的值.

解:如图在BE上取BK=CH,连接OB、OC、OK,
由三角形的外心的性质可知:∠BOC=2∠A=120°,
由三角形的垂心性质可知:∠BHC=180°-∠A=120°,
所以∠BOC=∠BHC,所以B、C、H、O四点共圆,∠OBH=∠OCH,…(3分)
又因为OB=OC,BK=CH,所以△BOK≌△COH,
因为∠BOK=∠COH,OK=OH,所以∠KOH=∠BOC=120°,∠OKH=∠OHK=30°,…(6分)
观察△OKH,有:=,则KH=OH,
又因为BM=CN,BK=CH,所以KM=NH,所以MH+NH=MH+KM=KH=OH,
=.…(8分)
分析:在BE上取BK=CH,连接OB、OC、OK,由圆周角定理及∠A=60°可得∠BOC=120°,而由重心的性质,可得∠BHC=120°,进而根据四点共圆的判定方法,得到B、C、H、O四点共圆,进而可得△BOK≌△COH,根据正弦定理,我们可得KH=OH,进而根据MH+NH=MH+KM=KH,即可得到答案.
点评:本题考查的知识点是三角形的外心,三角形的垂心,圆内接四边形(四点共圆)的判定与性质,圆周角定理,三角形全等的判定和性质,其中添加恰当的辅助线构造出全等的三角形,是解答本题的关键.本题辅助线添加方法比较困难,解答过程涉及知识点比较多,是平面几何中的难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选修4-1:几何证明选讲
如图,圆O的直径AB=10,弦DE⊥AB于点H,HB=2.
(1)求DE的长;
(2)延长ED到P,过P作圆O的切线,切点为C,若PC=2
5
,求PD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A、选修4-1:几何证明选讲 
如图,PA与⊙O相切于点A,D为PA的中点,
过点D引割线交⊙O于B,C两点,求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的方程为ρ=2
2
sin(θ+
π
4
)
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=t
y=1+2t
(t为参数),判断直线l和圆C的位置关系.
D.选修4-5:不等式选讲
求函数y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐州模拟)选修4-1:几何证明选讲
如图,直线AB经过圆上O的点C,并且OA=OB,CA=CB,圆O交于直线OB于E,D,连接EC,CD,若tan∠CED=
12
,圆O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)选修4-1:几何证明选讲
如图,圆O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交圆O于点E,连结BE与AC交于点F,求证:AE2=EF•BE.

查看答案和解析>>

同步练习册答案