【题目】函数f(x)的定义域为D={x|x≠0},且对于任意x1 , x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断函数f(x)的奇偶性并证明;
(3)如果f(4)=3,f(x﹣2)+f(x+1)≤3,且f(x)在(0,+∞)上是增函数,求实数x的取值范围.
【答案】
(1)解:对于任意x1,x2∈D,有f(x1x2)=f(x1)+f(x2),
令x1=x2=1,f(1)=f(1)+f(1)=2f(1),
∴f(1)=0,
(2)解:∵f[(﹣1)×(﹣1)]=f(﹣1)+f(﹣1)=2f(﹣1)=0,
∴f(﹣1)=0,
则f(﹣1×x)=f(﹣x)=f(﹣1)+f(x)=f(x)
∴f(x)为偶函数
(3)解:∵f(x1x2)=f(x1)+f(x2)且f(4)=3,
∴f(x﹣2)+f(x+1)≤3,即f[(x﹣2)(x+1)]≤f(4),
又∵f(x)在(0,+∞)上是增函数且f(x)为偶函数,
∴ 或
解得:﹣2≤x<﹣1或﹣1<x<2或2<x≤3,
∴x的取值范围为[﹣2,﹣1)∪(﹣1,2)∪(2,3]
【解析】(1)对于任意x1 , x2∈D,有f(x1x2)=f(x1)+f(x2),令x1=x2=1,可求f(1);(2)由(1)赋值可求f(﹣1)=0,进而可求f(﹣1×x)=f(﹣x)=f(1)+f(x)=f(x),可得f(x)为偶函数;(3)由f(4)=3,再由奇偶性和单调性,即可得到不等式组解得即可.
【考点精析】解答此题的关键在于理解函数单调性的判断方法的相关知识,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较,以及对函数的奇偶性的理解,了解偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程选讲]在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C1的参数方程为 为参数),曲线C2的极坐标方程为 .
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)设P为曲线C1上一点,Q曲线C2上一点,求|PQ|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左、右焦点分别为F1 , F2 , 上顶点为B,若△BF1F2的周长为6,且点F1到直线BF2的距离为b. (Ⅰ)求椭圆C的方程;
(Ⅱ)设A1 , A2是椭圆C长轴的两个端点,点P是椭圆C上不同于A1 , A2的任意一点,直线A1P交直线x=m于点M,若以MP为直径的圆过点A2 , 求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空间几何体ABCDEF如图所示.已知面ABCD⊥面ADEF,ABCD为梯形,ADEF为正方形,且AB∥CD,AB⊥AD,CD=4,AB=AD=2,G为CE的中点. (Ⅰ)求证:BG∥面ADEF;
(Ⅱ)求证:面DBG⊥面BDF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】李冶(1192﹣1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)( )
A.10步、50步
B.20步、60步
C.30步、70步
D.40步、80步
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 若Sm﹣1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*)
(Ⅰ)求m的值;
(Ⅱ)若数列{bn}满足 =log2bn(n∈N+),求数列{(an+6)bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(x3﹣x2+a)+f(﹣x3+x2﹣a)≥2f(1)对x∈[0,1]恒成立,则实数a的取值范围为( )
A.[ ,1]
B.[﹣ ,1]
C.[1,3]
D.(﹣∞,1]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴,并在两坐标系中取相同的长度单位,若直线l的极坐标方程是ρsin(θ+ )=2 ,且点P是曲线C: (θ为参数)上的一个动点.
(Ⅰ)将直线l的方程化为直角坐标方程;
(Ⅱ)求点P到直线l的距离的最大值与最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com