精英家教网 > 高中数学 > 题目详情
(理)设函数f(x)是定义在R上的以5为周期的奇函数,若f(2)>0,f(3)=
a+2
a-3
,则a的取值范围是(  )
分析:根据函数是以5为周期的奇函数,得f(2)=f(-3),结合函数为奇函数,得f(-3)=-f(3)=-
a+2
a-3
.由此结合f(2)>1建立关于a的不等式,解之可得a的取值范围.
解答:解:∵函数f(x)以5为周期,∴f(2)=f(-3),
又∵f(3)=
a+2
a-3
函数是奇函数
∴f(-3)=-f(3)=-
a+2
a-3

因此,f(2)=f(-3)=
a+2
3-a
>0,
即(a+2)(a-3)<0,
解之得-2<a<3.
故选:A.
点评:本题在已知函数为奇函数且是周期函数的情况下,解关于a的不等式,考查了函数的奇偶性和周期性,以及不等式的解法等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)设函数f(x)=(x+1)ln(x+1).
(1)求f(x)的单调区间;
(2)若对所有的x≥0,均有f(x)≥ax成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)设函数f(x)=x2+|2x-a|(x∈R,a为常数).
(1)当a=2时,讨论函数f(x)的单调性;
(2)若a>-2,且函数f(x)的最小值为2,求a的值;
(3)若a≥2,不等式f(x)≥ab2恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)设函数f(x)=a1•sin(x+α1)+a2•sin(x+α2)+…+an•sin(x+αn),其中ai、αi(i=1,2,…,n,n∈N*,n≥2)为已知实常数,x∈R.
下列关于函数f(x)的性质判断正确的命题的序号是
①②③④
①②③④

①若f(0)=f(
π
2
)=0
,则f(x)=0对任意实数x恒成立;
②若f(0)=0,则函数f(x)为奇函数;
③若f(
π
2
)=0
,则函数f(x)为偶函数;
④当f2(0)+f2(
π
2
)≠0
时,若f(x1)=f(x2)=0,则x1-x2=kπ(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•松江区模拟)(理)设函数f(x)的图象与直线x=a,x=b及x轴所围成图形的面积称为函数f(x)在[a,b]上的面积.已知函数y=sinnx在[0,
π
n
]
上的面积为
2
n
(n∈N*)
,则函数y=cos3x+1在[0,
6
]
上的面积为
5π+2
6
5π+2
6

查看答案和解析>>

同步练习册答案