精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱(侧棱和底面垂直的棱柱)中,,,且满足.

(1)求证:平面侧面
(2)求二面角的平面角的余弦值。
(1)详见解析;(2)

试题分析:(1)可证得面侧面(2)此问采用空间向量法较好。先建系,写出个点坐标,再给出各向量的坐标,分别求面和面的法向量。先求得两法向量所成角的余弦值,但两法向量所成的角和二面角相等或互补,观察可知此二面角为顿角,所以余弦值为负值。
试题解析:(1)证明: ,


          4分
(2)由(Ⅰ)知,以点为坐标原点,以所在的直线分
别为轴、轴、轴,可建立如图所示的空间直角坐标系,

, , ,  
又由线段上分别有一点
满足
所以E(1,2,0), F(0,1,1)        6分
 
的一个法向量       8分
此时面的一个法向量为,则
设所求二面角平面角为,观察可知为钝角,
 。               12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面ABCD是平行四边形,,设中点,点在线段上且

(1)求证:平面
(2)设二面角的大小为,若,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直角梯形中,,点分别是的中点,点上,沿将梯形翻折,使平面平面.

(1)当最小时,求证:;
(2)当时,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABEF和四边形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,FA⊥CD.

(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;
(2)求二面角F­CD­A的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCD-A1B1C1D1的棱长为1,O是底面A1B1C1D1的中心,则点O到平面ABC1D1的距离为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线l⊥平面α,直线l的方向向量为s,平面α的法向量为n,则下列结论正确的是(  )
A.s=(1,0,1),n=(1,0,-1)
B.s=(1,1,1),n=(1,1,-2)
C.s=(2,1,1),n=(-4,-2,-2)
D.s=(1,3,1),n=(2,0,-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1的棱长为a,点M在AC1上且=,N为B1B的中点,则||为(  )
A.aB.aC.aD.a

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D,E,F分别是棱AB,BC,CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间直角坐标系中,点关于轴的对称点的坐标为       (    )
A.B.C.D.

查看答案和解析>>

同步练习册答案