精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四边形ABCD为正方形,PD⊥平面ABCD且PD=AD,则下列命题中错误的是(  )

A.过BD且与PC平行的平面交PA于M点,则M为PA的中点
B.过AC且与PB垂直的平面交PB于N点,则N为PB的中点
C.过AD且与PC垂直的平面交PC于H点,则H为PC的中点
D.过P、B、C的平面与平面PAD的交线为直线l,则l∥AD

【答案】B
【解析】解:设AC∩BD=O,∵ABCD是正方形,∴O是AC中点,
∵过BD且与PC平行的平面交PA于M点,∴OM∥PC,
∴M是PA中点,故A正确;
设N为PB的中点,连结AN,
∵PA与AB不一定相等,∴AN与PB不一定垂直,
∴过AC且与PB垂直的平面交PB于N点,则N不一定是PB中点,故B错误;
∵四边形ABCD为正方形,PD⊥平面ABCD且PD=AD,
∴PA=AC,PD=DC,
∴过AD且与PC垂直的平面宛PC于H点,则H为PC的中点,故C正确;
∵AD∥BC,平面PAD与平面PCB有公共点P,
∴l∥AD∥BC,故D正确.
故选:B.

【考点精析】本题主要考查了直线与平面垂直的性质的相关知识点,需要掌握垂直于同一个平面的两条直线平行才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=x3+2x2﹣4x+5在[﹣4,1]上的最大值和最小值分别是(
A.13,
B.4,﹣11
C.13,﹣11
D.13,最小值不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形所在的平面与正方形所在的平面相互垂直,点的中点.

I)求证: 平面

II)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当>0时,求函数的极值点;

(2)证明:当时, 恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体是棱上的一点

1求证:平面

2求证:

3是棱的中点在棱上是否存在点使得平面若存在求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.
(Ⅰ)求证:AC⊥DE;
(Ⅱ)求四棱锥P﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为,其中为参数, ,再以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,其中 ,直线与曲线交于两点.

(1)求的值;

(2)已知点,且,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.

(1)如图1,若点O与点A重合,则OM与ON的数量关系是
(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?
(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:
已知:直线l和l外一点P.(如图1)
求作:直线l的垂线,使它经过点P.
作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.
所以直线PQ就是所求的垂线.
请回答:该作图的依据是

查看答案和解析>>

同步练习册答案