精英家教网 > 高中数学 > 题目详情

【题目】如图,矩形所在的平面与正方形所在的平面相互垂直,点的中点.

I)求证: 平面

II)求证:平面平面

【答案】I见解析;(II见解析.

【解析】试题分析:(1)要证线面平行,只须在平面内找到一条直线与这条直线平行,对本小题来说,连接于点,由三角形的中位线定理可证得,问题得证;(2)要证面面垂直,只要在其中一个平面内找到一条直线与另一个平面垂直即可,由四边形为正方形且为对角线的中点,所以有,故可考虑证明平面,故需要在平面内再找一条直线与垂直即可,由平面平面,交线为,从而平面,可得,从而问题得证.

试题解析:(1)连接,连接

在三角形中, 分别为的中点

所以2

平面 平面

所以平面4

2)因为矩形所在的平面与正方形所在的平面相互垂直

平面平面 =

所以

,所以6

又因为的中点,所以

,所以7

,所以平面平面8.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)函数的图象能否与轴相切?若能与轴相切,求实数的值;否则,请说明理由;

(2)若函数上单调递增,求实数能取到的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a为实数,函数f(x)=x3﹣x2﹣x+a,若函数f(x)过点A(1,0),求函数在区间[﹣1,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程为为参数).

1)判断直线与曲线的位置关系,并说明理由;

2)若直线和曲线相交于两点,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左、右焦点分别为圆 上一点, ,且

(1)求椭圆的方程;

(2)当过点的动直线与椭圆相交于不同两点时,线段上取点,且满足,证明点总在某定直线上,并求出该定直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要想得到函数y=sin(x﹣ )的图象,只须将y=cosx的图象(
A.向右平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向左平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=3sin(2x﹣ )的图象为C,下列结论中正确的是(
A.图象C关于直线x= 对称
B.图象C关于点(﹣ ,0)对称
C.函数f(x)在区间(﹣ )内是增函数
D.由y=3sin2x的图象向右平移 个单位长度可以得到图象C

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD为正方形,PD⊥平面ABCD且PD=AD,则下列命题中错误的是(  )

A.过BD且与PC平行的平面交PA于M点,则M为PA的中点
B.过AC且与PB垂直的平面交PB于N点,则N为PB的中点
C.过AD且与PC垂直的平面交PC于H点,则H为PC的中点
D.过P、B、C的平面与平面PAD的交线为直线l,则l∥AD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

(Ⅰ)已知,证明:

(Ⅱ)若对任意实数,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案