精英家教网 > 高中数学 > 题目详情
7.设x∈R,则x>1的一个必要不充分条件是(  )
A.x>0B.x<0C.x>2D.x<2

分析 根据必要不充分条件的进行进行求解即可.

解答 解:设不等式对应的集合为A,
则x>1的一个必要不充分条件则满足,对应的集合(0,+∞)?A,
则x>0满足条件.
故选:A

点评 本题主要考查充分条件和必要条件的应用,根据充分条件和必要条件的定义和关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.定义在R上的f(x)为奇函数,对任意两个正数m,n,总有f(mn)=f(m)+f(n),且当x>1时,f(x)>0.
(Ⅰ)求f(1),并判断f(x)在(0,+∞)上的单调性;
(Ⅱ)设g(x)=sin2x+mcosx-2m,集合M={m|对任意的x∈[0,$\frac{π}{2}$],g(x)<0},N={m|对任意的x∈[0,$\frac{π}{2}$],f[g(x)]<0},求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知抛物线y=ax2+bx+c经过O(0,0),A(4,0),B(3,$\sqrt{3}$)三点,连接AB,过点B作BC∥x轴交该抛物线于点C.
(1)求这条抛物线的函数关系式.
(2)两个动点P、Q分别从O、A同时出发,以每秒1个单位长度的速度运动.其中,点P沿着线段OA向A点运动,点Q沿着线段AB向B点运动.设这两个动点运动的时间为t(秒)(0<t≤2),△PQA的面积记为S.
①求S与t的函数关系式;
②当t为何值时,S有最大值,最大值是多少?并指出此时△PQA的形状;
(3)是否存在这样的t值,使得△PQA是直角三角形?若存在,请直接写出此时P、Q两点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若函数f(x)为定义在R上的奇函数,且x>0时,f(x)=lg(x+1)
(1)求f(x)的解析式,并画出大致图象;
(2)若对于任意t∈R,不等式f(t2-2t)+f(k-2t2)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设数列{an}的前n项和是Sn,令${T_n}=\frac{{{S_1}+{S_2}+…+{S_n}}}{n}$,称Tn为数列a1,a2,…,an的“理想数”,已知数列a1,a2,…,a502的“理想数”为2015,则数列6,a1,a2,…,a502的理想数为(  )
A.2014B.2015C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设平面区域D是由双曲线y2-$\frac{{x}^{2}}{4}$=1的两条渐近线和抛物线y2=-8x的准线所围成的三角形区域(含边界),若点(x,y)∈D,则z=|3x-4y+5|的最大值是15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=$\sqrt{lo{g}_{\frac{1}{2}}tanx}$的定义域是{x|kπ<x≤$\frac{π}{4}$+kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=log${\;}_{\frac{1}{3}}$(x2-9)的定义域为(-∞,-3)∪(3,+∞),单调递增区间为
(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果三角形三个顶点分别是O(0,0),A(0,6),B(-8,0),则它的内切圆方程为(x+2)2+(y-2)2=4.

查看答案和解析>>

同步练习册答案