精英家教网 > 高中数学 > 题目详情
14.若函数f(x)同时满足:①对于定义域上的任意x,恒有f(x)+f(-x)=0;②对于定义域上的任意x1,x2,当x1≠x2时,恒有(x1-x2)[f(x1)-f(x2)]<0,则称函数f(x)为“优美函数”,则下列函数中是“优美函数”的是(  )
A.f(x)=ex+e-xB.f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$
C.f(x)=lg($\sqrt{{x}^{2}+1}-x$)D.f(x)=$\left\{\begin{array}{l}{{x}^{2},}&{x≥0}\\{-{x}^{2},}&{x<0}\end{array}\right.$

分析 由题意知“优美函数”既是奇函数,又是减函数,由此利用函数的奇偶性和单调性能确定正确选项.

解答 解:∵函数f(x)同时满足:①对于定义域上的任意x,恒有f(x)+f(-x)=0;
②对于定义域上的任意x1,x2,当x1≠x2时,恒有(x1-x2)[f(x1)-f(x2)]<0,
则称函数f(x)为“优美函数”,
∴“优美函数”既是奇函数,又是减函数,
在A中,f(x)=ex+e-x是偶函数,故A不是“优美函数”;
在B中,f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$=1-$\frac{2}{{2}^{x}+1}$是增函数,故B不是“优美函数”;
在C中,f(x)=lg($\sqrt{{x}^{2}+1}-x$)既是奇函数,又是减函数,故C是“优美函数”;
在D中,f(x)=$\left\{\begin{array}{l}{{x}^{2},}&{x≥0}\\{-{x}^{2},}&{x<0}\end{array}\right.$是增函数,故D不是“优美函数”.
故选:C.

点评 本题考查“优美函数”的判断,是基础题,解题时要认真审题,解题的关键是判断出“优美函数”既是奇函数,又是减函数,解题时要注意函数的奇偶性和单调性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知双曲线C的中心在坐标原点,焦距2c=6,一条准线方程为x=2
(1)求双曲线C的方程;
(2)若双曲线C的渐近线与圆(x-3)2+y2=r2(r>0)相切,求实数r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-1}.
(1)若0∈A∩B,求a的取值范围;
(2)若A∪B=R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知抛物线y2=4x上一点P在y轴上的射影为N,动点M在直线y=x+2上,则PM+PN的最小值为$\frac{3\sqrt{2}-2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且f(2)=0,则使得(x-2)f(x)<0的x的取值范围是(  )
A.(-∞,-2)B.(2,+∞)C.(-∞,-2)∪(2,+∞)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=x|x|+bx+c,给出下列四个命题:
①当x>0时,f(x)是增函数;
②f(x)的图象关于(0,c)对称;
③当b≠0时,方程f(x)=0必有三个实数根;
④当b=0时,方程f(x)=0有且只有一个实根.
其中正确的命题是②④(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,b=$\sqrt{2}$,B=45°,则角A=(  )
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.三个数60.7,(0.7)6,log0.76的大小顺序是(  )
A.(0.7)6<60.7<log0.76B.${({0.7})^6}<{log_{0.7}}6<{6^{0.7}}$
C.${log_{0.7}}6<{({0.7})^6}<{6^{0.7}}$D.${log_{0.7}}6<{6^{0.7}}<{({0.7})^6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.请在图中用阴影部分表示下面一个集合:((A∩B)∪(A∩C)∩(∁uB∪∁uC)

查看答案和解析>>

同步练习册答案